Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fabrication and Operation Characteristics of Electrolyte Impregnated Matrix and Cathode for Molten Carbonate Fuel Cells

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Chang-Whan-
dc.contributor.authorLee, Mihui-
dc.contributor.authorKang, Min-Goo-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorYoon, Sung-Pil-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorLee, Ki Bong-
dc.contributor.authorHam, Hyung Chul-
dc.date.accessioned2021-09-02T12:48:40Z-
dc.date.available2021-09-02T12:48:40Z-
dc.date.created2021-06-16-
dc.date.issued2018-04-
dc.identifier.issn2288-6206-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/76199-
dc.description.abstractIn this work, an electrolyte impregnated cathode and matrix were fabricated using (Li/Na)(2)CO3 powders for use in a molten carbonate fuel cell (MCFC). 87% of cathode pores and 90% of matrix pores were filled with electrolyte. A 25 cm(2) single cell was used with electrolyte impregnated components. Cell performance of the single cell with electrolyte impregnated components showed a similar performance to a conventional single cell. After cell operation, electrolyte was found to have moved to the anode, cathode and matrix. The remaining electrolyte in matrix pores, cathode pores and anode pores are 94.62%, 42.75%, was 21.56%, respectively. By using electrolyte impregnated components, the change of the wet-seal height was decreased 86.78% (to 0.23 mm) comparing with the conventional cell. Electrolyte impregnated components will provide simplified pretreatment process and remove problems in the pretreatment condition such as non-uniform electrolyte melting.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherKOREAN SOC PRECISION ENG-
dc.subjectMCFC-
dc.subjectPERFORMANCE-
dc.subjectMANAGEMENT-
dc.subjectALUMINUM-
dc.titleFabrication and Operation Characteristics of Electrolyte Impregnated Matrix and Cathode for Molten Carbonate Fuel Cells-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Ki Bong-
dc.identifier.doi10.1007/s40684-018-0029-2-
dc.identifier.scopusid2-s2.0-85051076869-
dc.identifier.wosid000432458600011-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, v.5, no.2, pp.279 - 286-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY-
dc.citation.titleINTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY-
dc.citation.volume5-
dc.citation.number2-
dc.citation.startPage279-
dc.citation.endPage286-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART002335121-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Manufacturing-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.subject.keywordPlusMCFC-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusALUMINUM-
dc.subject.keywordAuthorMolten carbonate fuel cell-
dc.subject.keywordAuthorElectrolyte-
dc.subject.keywordAuthorCathode-
dc.subject.keywordAuthorMatrix-
dc.subject.keywordAuthorImpregnation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ki Bong photo

Lee, Ki Bong
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE