Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Rational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-02T14:48:00Z-
dc.date.available2021-09-02T14:48:00Z-
dc.date.created2021-06-16-
dc.date.issued2018-03-
dc.identifier.issn1998-0124-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/77276-
dc.description.abstractHerein, hierarchically structured SnO2 microspheres are designed and synthesized as an efficient anode material for lithium-ion batteries using hollow SnO2 nanoplates. Three-dimensionally ordered macroporous (3-DOM) SnOx-C microspheres synthesized by spray pyrolysis are transformed into hierarchically structured SnO2 microspheres by a two-step post-treatment process. Sulfidation produces hierarchically structured SnS-SnS2-C microspheres comprising tin sulfide nanoplate and carbon building blocks. A subsequent oxidation process produces SnO2 microspheres from hollow SnO2 nanoplate building blocks, which are formed by Kirkendall diffusion. The discharge capacity of the hierarchically structured SnO2 microspheres at a current density of 5 A.g(-1) for the 600th cycle is 404 mA.h.g(-1). The hierarchically structured SnO2 microspheres have reversible discharge capacities of 609 and 158 mA.h.g(-1) at current densities of 0.5 and 30 A.g(-1), respectively. The ultrafine nanosheets contain empty voids that allow excellent lithium-ion storage performance, even at high current densities.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherTSINGHUA UNIV PRESS-
dc.subjectGRAPHENE OXIDE COMPOSITE-
dc.subjectNANOSCALE KIRKENDALL DIFFUSION-
dc.subjectHIGH-CAPACITY ANODE-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectRATE CAPABILITY-
dc.subjectENERGY-STORAGE-
dc.subjectCYCLE LIFE-
dc.subjectNANOSHEETS-
dc.subjectNANOSPHERES-
dc.subjectPERFORMANCE-
dc.titleRational design and synthesis of hierarchically structured SnO2 microspheres assembled from hollow porous nanoplates as superior anode materials for lithium-ion batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1007/s12274-017-1744-7-
dc.identifier.scopusid2-s2.0-85027033342-
dc.identifier.wosid000424049300012-
dc.identifier.bibliographicCitationNANO RESEARCH, v.11, no.3, pp.1301 - 1312-
dc.relation.isPartOfNANO RESEARCH-
dc.citation.titleNANO RESEARCH-
dc.citation.volume11-
dc.citation.number3-
dc.citation.startPage1301-
dc.citation.endPage1312-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusGRAPHENE OXIDE COMPOSITE-
dc.subject.keywordPlusNANOSCALE KIRKENDALL DIFFUSION-
dc.subject.keywordPlusHIGH-CAPACITY ANODE-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusRATE CAPABILITY-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusCYCLE LIFE-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorKirkendall diffusion-
dc.subject.keywordAuthornanoplate-
dc.subject.keywordAuthortin oxide-
dc.subject.keywordAuthorlithium-ion battery-
dc.subject.keywordAuthorspray pyrolysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE