Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tailored Porous ZnCo2O4 Nanofibrous Electrocatalysts for Lithium-Oxygen Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jae-Chan-
dc.contributor.authorLee, Gwang-Hee-
dc.contributor.authorLee, Seun-
dc.contributor.authorOh, Seung-Ik-
dc.contributor.authorKang, Yongku-
dc.contributor.authorKim, Dong-Wan-
dc.date.accessioned2021-09-02T14:53:12Z-
dc.date.available2021-09-02T14:53:12Z-
dc.date.created2021-06-16-
dc.date.issued2018-02-22-
dc.identifier.issn2196-7350-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/77320-
dc.description.abstractLithium-oxygen batteries are considered a next-generation technology owing to their extremely high theoretical energy density despite many challenges such as low round-trip efficiency and poor cyclability. The air-cathode structure and pore properties play a key role in solving these problems. In this study, we fabricate ZnCo2O4 nanofibers and design a porous nanostructure using a facile electrospinning process and selective etching of ZnO as the cathode material in lithium-oxygen batteries. First, non-porous ZnCo2O4 nanofiber electrodes accomplish high catalytic activity and good cycling stability during 116 cycles with a limited capacity of 1000 mA h g(-1) at a current density of 500 mA g(-1). For enhanced catalytic activity and cyclability, ZnO included ZnCo2O4 nanofibers are prepared using a Zn-excess electrospun solution and porous ZnCo2O4 nanofibers are fabricated via selective etching of ZnO. Porous ZnCo2O4 nanofiber electrodes exhibit excellent electrocatalytic activity and cyclability for 226 cycles with a limited capacity of 1000 mA h g(-1) at a current density of 500 mA g(-1). The exceptional catalytic properties explain the synergistic effect of the one-dimensional nanostructure and porous structure with an appropriate pore diameter, providing a large active site and an efficient electron pathway during the Li2O2 formation/decomposition process.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectEFFICIENT BIFUNCTIONAL CATALYST-
dc.subjectLI-O-2 BATTERIES-
dc.subjectMESOPOROUS ZNCO2O4-
dc.subjectELECTRODE MATERIAL-
dc.subjectMETAL-OXIDE-
dc.subjectMICROSPHERES-
dc.subjectNANOTUBES-
dc.subjectGRAPHENE-
dc.subjectNANORODS-
dc.subjectFACILE-
dc.titleTailored Porous ZnCo2O4 Nanofibrous Electrocatalysts for Lithium-Oxygen Batteries-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Gwang-Hee-
dc.contributor.affiliatedAuthorKim, Dong-Wan-
dc.identifier.doi10.1002/admi.201701234-
dc.identifier.scopusid2-s2.0-85037732780-
dc.identifier.wosid000425729300012-
dc.identifier.bibliographicCitationADVANCED MATERIALS INTERFACES, v.5, no.4-
dc.relation.isPartOfADVANCED MATERIALS INTERFACES-
dc.citation.titleADVANCED MATERIALS INTERFACES-
dc.citation.volume5-
dc.citation.number4-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusEFFICIENT BIFUNCTIONAL CATALYST-
dc.subject.keywordPlusLI-O-2 BATTERIES-
dc.subject.keywordPlusMESOPOROUS ZNCO2O4-
dc.subject.keywordPlusELECTRODE MATERIAL-
dc.subject.keywordPlusMETAL-OXIDE-
dc.subject.keywordPlusMICROSPHERES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusFACILE-
dc.subject.keywordAuthorelectrospinning-
dc.subject.keywordAuthorlithium-oxygen batteries-
dc.subject.keywordAuthornanofibers-
dc.subject.keywordAuthorporous structure-
dc.subject.keywordAuthorZnCo2O4-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE