Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrochemical properties of uniquely structured Fe2O3 and FeSe2/graphitic-carbon microrods synthesized by applying a metal-organic framework

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Seung-Keun-
dc.contributor.authorKim, Jin Koo-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-02T14:56:27Z-
dc.date.available2021-09-02T14:56:27Z-
dc.date.created2021-06-16-
dc.date.issued2018-02-15-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/77347-
dc.description.abstractUniquely structured Fe2O3 and FeSe2/graphitic-carbon (GC) microrods composed of hollow Fe2O3 and FeSe2 nanospheres, respectively, were successfully prepared by applying a metal-organic framework (MOF, MIL-88) as the precursor and template. This strategy involves the fabrication of Fe@GC microrods by the thermal reduction of MIL-88 microrods followed by transformation into hollow Fe2O3 nanosphere aggregate (H-Fe2O3-NSA) microrods and hollow FeSe2 nanosphere aggregate/GC (H-FeSe2/GC) microrods by means of oxidation and selenization, respectively. During the post-treatment step, metallic Fe nanocrystals embedded in GC are converted into hollow metal compound nanospheres through nanoscale Kirkendall diffusion. This novel structure makes it possible to achieve a superior electrochemical performance by alleviating the volume variation and providing ample ion reaction sites. In addition, in the case of H-FeSe2/GC, the carbon framework not only prevents the structural collapse but also ensures sufficient electron transport during repeated cycles. Thus, the H-Fe2O3-NSA and H-FeSe2/GC microrods have high specific discharge capacities of 973 mA h g(-1) after 400 cycles at 1 A g(-1) and 587 mA h g(-1) after 100 cycles at 0.2 A g(-1) when applied as anode materials for lithium-ion and sodium-ion batteries, respectively.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectNANOSCALE KIRKENDALL DIFFUSION-
dc.subjectPERFORMANCE ANODE MATERIAL-
dc.subjectGRAPHENE OXIDE-
dc.subjectLITHIUM STORAGE-
dc.subjectHOLLOW MICROSPHERES-
dc.subjectFESE2 MICROSPHERES-
dc.subjectION BATTERIES-
dc.subjectLI-STORAGE-
dc.subjectNANOPARTICLES-
dc.subjectNANOTUBES-
dc.titleElectrochemical properties of uniquely structured Fe2O3 and FeSe2/graphitic-carbon microrods synthesized by applying a metal-organic framework-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1016/j.cej.2017.12.014-
dc.identifier.scopusid2-s2.0-85037355081-
dc.identifier.wosid000418533400243-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.334, pp.2440 - 2449-
dc.relation.isPartOfCHEMICAL ENGINEERING JOURNAL-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume334-
dc.citation.startPage2440-
dc.citation.endPage2449-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusNANOSCALE KIRKENDALL DIFFUSION-
dc.subject.keywordPlusPERFORMANCE ANODE MATERIAL-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusLITHIUM STORAGE-
dc.subject.keywordPlusHOLLOW MICROSPHERES-
dc.subject.keywordPlusFESE2 MICROSPHERES-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusLI-STORAGE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordAuthorMetal-organic framework-
dc.subject.keywordAuthorKirkendall effect-
dc.subject.keywordAuthorIron oxide-
dc.subject.keywordAuthorIron selenide-
dc.subject.keywordAuthorLithium-ion batteries-
dc.subject.keywordAuthorSodium-ion batteries-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE