Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Su Min-
dc.contributor.authorKang, Han Lim-
dc.contributor.authorWon, Jong Kook-
dc.contributor.authorKim, JaeHyun-
dc.contributor.authorHwang, ChaHwan-
dc.contributor.authorAhn, KyungHan-
dc.contributor.authorChung, In-
dc.contributor.authorJu, Byeong-Kwon-
dc.contributor.authorKim, Myung-Gil-
dc.contributor.authorPark, Sung Kyu-
dc.date.accessioned2021-09-02T16:02:13Z-
dc.date.available2021-09-02T16:02:13Z-
dc.date.created2021-06-16-
dc.date.issued2018-01-31-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/77925-
dc.description.abstractThe recent development of high-performance colloidal quantum dot (QD) thin-film transistors (TFTs) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high-performance solution-processed CdSe QD-TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex situ reaction derived MCC ligands, such as Sn2S64-, Sn2Se64-, and In2Se42-, to allow benign solution-process available. Furthermore, the defect passivation and remote n-type doping effects have been investigated by incorporating indium nanoparticles over the QD layer. Strong electronic coupling and solid defect passivation of QDs could be achieved by introducing electronically active MCC capping and thermal diffusion of the indium nanoparticles, respectively. It is also noteworthy that the diffused indium nanoparticles facilitate charge injection not only inter-QDs but also between source/drain electrodes and the QD semiconductors, significantly reducing contact resistance. With benign organic solvents, the Sn2S64-, Sn2Se64-, and In2Se42- ligand based QD-TFTs exhibited field-effect mobilities exceeding 4.8, 12.0, and 44.2 cm(2)/(V s), respectively. The results reported here imply that the incorporation of MCC ligands and appropriate dopants provide a general route to high-performance, extremely stable solution-processed QD-based electronic devices with marginal toxicity, offering compatibility with standard complementary metal oxide semiconductor processing and large-scale on-chip device applications.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectFIELD-EFFECT TRANSISTORS-
dc.subjectCRYSTAL-STRUCTURE-
dc.subjectCOLLOIDAL NANOCRYSTALS-
dc.subjectINDIUM NANOPARTICLES-
dc.subjectLOW-VOLTAGE-
dc.subjectMOBILITY-
dc.subjectTEMPERATURE-
dc.subjectLIGANDS-
dc.subjectTRANSPORT-
dc.subjectSOLIDS-
dc.titleHigh-Performance Quantum Dot Thin-Film Transistors with Environmentally Benign Surface Functionalization and Robust Defect Passivation-
dc.typeArticle-
dc.contributor.affiliatedAuthorJu, Byeong-Kwon-
dc.identifier.doi10.1021/acsami.7b13997-
dc.identifier.scopusid2-s2.0-85041446743-
dc.identifier.wosid000424728800067-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.10, no.4, pp.3739 - 3749-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume10-
dc.citation.number4-
dc.citation.startPage3739-
dc.citation.endPage3749-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTORS-
dc.subject.keywordPlusCRYSTAL-STRUCTURE-
dc.subject.keywordPlusCOLLOIDAL NANOCRYSTALS-
dc.subject.keywordPlusINDIUM NANOPARTICLES-
dc.subject.keywordPlusLOW-VOLTAGE-
dc.subject.keywordPlusMOBILITY-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusLIGANDS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusSOLIDS-
dc.subject.keywordAuthorquantum dots-
dc.subject.keywordAuthorfield-effect transistor-
dc.subject.keywordAuthorcadmium-selenide-
dc.subject.keywordAuthorhigh mobility-
dc.subject.keywordAuthormetal chalcogenide-
dc.subject.keywordAuthordoping-
dc.subject.keywordAuthorthermal diffusion-
dc.subject.keywordAuthornonhydrazine-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ju, Byeong kwon photo

Ju, Byeong kwon
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE