Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide

Full metadata record
DC Field Value Language
dc.contributor.authorJo, Hong Seok-
dc.contributor.authorAn, Seongpil-
dc.contributor.authorXuan Hung Nguyen-
dc.contributor.authorKim, Yong Il-
dc.contributor.authorBang, Boo-Hyoung-
dc.contributor.authorJames, Scott C.-
dc.contributor.authorChoi, Jeehoon-
dc.contributor.authorYoon, Sam S.-
dc.date.accessioned2021-09-02T16:16:03Z-
dc.date.available2021-09-02T16:16:03Z-
dc.date.created2021-06-16-
dc.date.issued2018-01-05-
dc.identifier.issn1359-4311-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/78002-
dc.description.abstractLiquid flow inside a heat pipe due to capillary forces can be used to cool electronic devices. To promote capillary-driven flow, a multilayer, porous wicking surface was designed for optimal liquid transport. The multilayer-porous structure consists of micro-porous structure decorated with nanomaterials. Herein, we demonstrate that micro-porous copper coated with graphene oxide (GO) has elevated capillary forces that can increase both the critical heat flux and the convective heat transfer coefficient. The thin GO layer promotes hydrophilicity that enhances the wettability of the wicking surface. However, an excessively thick GO coating can decrease permeability even in the presence of increased capillary pressures such that overall flow is hindered. In this work an optimal coating thickness is identified and characterized by heat-transfer experiments and scanning electron microscopy. (C) 2017 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectLOOP HEAT-PIPE-
dc.subjectFLUX-
dc.titleModifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide-
dc.typeArticle-
dc.contributor.affiliatedAuthorYoon, Sam S.-
dc.identifier.doi10.1016/j.applthermaleng.2017.09.103-
dc.identifier.scopusid2-s2.0-85030693797-
dc.identifier.wosid000414884700149-
dc.identifier.bibliographicCitationAPPLIED THERMAL ENGINEERING, v.128, pp.1605 - 1610-
dc.relation.isPartOfAPPLIED THERMAL ENGINEERING-
dc.citation.titleAPPLIED THERMAL ENGINEERING-
dc.citation.volume128-
dc.citation.startPage1605-
dc.citation.endPage1610-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaThermodynamics-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalWebOfScienceCategoryThermodynamics-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.subject.keywordPlusLOOP HEAT-PIPE-
dc.subject.keywordPlusFLUX-
dc.subject.keywordAuthorHeat pipe-
dc.subject.keywordAuthorWicking-
dc.subject.keywordAuthorCapillary pressure-
dc.subject.keywordAuthorPermeability-
dc.subject.keywordAuthorBoiling limitation-
dc.subject.keywordAuthorGraphene oxide-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Suk Goo photo

Yoon, Suk Goo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE