Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Single- and Mutiple-Shell Uniform Sampling Schemes for Diffusion MRI Using Spherical Codes

Full metadata record
DC Field Value Language
dc.contributor.authorCheng, Jian-
dc.contributor.authorShen, Dinggang-
dc.contributor.authorYap, Pew-Thian-
dc.contributor.authorBasser, Peter J.-
dc.date.accessioned2021-09-02T16:24:16Z-
dc.date.available2021-09-02T16:24:16Z-
dc.date.created2021-06-16-
dc.date.issued2018-01-
dc.identifier.issn0278-0062-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/78070-
dc.description.abstractIn diffusion MRI (dMRI), a good sampling scheme is important for efficient acquisition and robust reconstruction. Diffusion weighted signal is normally acquired on single or multiple shells in q-space. Signal samples are typically distributed uniformly on different shells to make them invariant to the orientation of structures within tissue, or the laboratory coordinate frame. The electrostatic energy minimization (EEM) method, originally proposed for single shell sampling scheme in dMRI, was recently generalized to multi-shell schemes, called generalized EEM (GEEM). GEEM has been successfully used in the human connectome project. However, EEM does not directly address the goal of optimal sampling, i.e., achieving large angular separation between sampling points. In this paper, we propose a more natural formulation, called spherical code (SC), to directly maximize the minimal angle between different samples in single or multiple shells. We consider not only continuous problems to design single or multiple shell sampling schemes, but also discrete problems to uniformly extract sub-sampled schemes from an existing single or multiple shell scheme, and to order samples in an existing scheme. We propose five algorithms to solve the above problems, including an incremental SC (ISC), a sophisticated greedy algorithm called iterative maximum overlap construction (IMOC), an 1-Opt greedy method, a mixed integer linear programming method, and a constrained non-linear optimization method. To our knowledge, this is the first work to use the SC formulation for single or multiple shell sampling schemes in dMRI. Experimental results indicate that SC methods obtain larger angular separation and better rotational invariance than the state-of-the-art EEM and GEEM. The related codes and a tutorial have been released in DMRITool.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectORIENTATION DISTRIBUTION FUNCTION-
dc.subjectROBUST ESTIMATION-
dc.subjectIMAGING METHOD-
dc.subjectWEIGHTED MRI-
dc.subjectMODEL-FREE-
dc.subjectDTI DATA-
dc.subjectRESOLUTION-
dc.subjectDECONVOLUTION-
dc.subjectACQUISITION-
dc.subjectANISOTROPY-
dc.titleSingle- and Mutiple-Shell Uniform Sampling Schemes for Diffusion MRI Using Spherical Codes-
dc.typeArticle-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.identifier.doi10.1109/TMI.2017.2756072-
dc.identifier.scopusid2-s2.0-85030709350-
dc.identifier.wosid000419346900017-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MEDICAL IMAGING, v.37, no.1, pp.185 - 199-
dc.relation.isPartOfIEEE TRANSACTIONS ON MEDICAL IMAGING-
dc.citation.titleIEEE TRANSACTIONS ON MEDICAL IMAGING-
dc.citation.volume37-
dc.citation.number1-
dc.citation.startPage185-
dc.citation.endPage199-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusORIENTATION DISTRIBUTION FUNCTION-
dc.subject.keywordPlusROBUST ESTIMATION-
dc.subject.keywordPlusIMAGING METHOD-
dc.subject.keywordPlusWEIGHTED MRI-
dc.subject.keywordPlusMODEL-FREE-
dc.subject.keywordPlusDTI DATA-
dc.subject.keywordPlusRESOLUTION-
dc.subject.keywordPlusDECONVOLUTION-
dc.subject.keywordPlusACQUISITION-
dc.subject.keywordPlusANISOTROPY-
dc.subject.keywordAuthorSampling-
dc.subject.keywordAuthorq-space-
dc.subject.keywordAuthormultiple shells-
dc.subject.keywordAuthoruniform spherical sampling-
dc.subject.keywordAuthordiffusion MRI-
dc.subject.keywordAuthorspherical codes-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE