Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Near-Infrared Plasmonic Assemblies of Gold Nanoparticles with Multimodal Function for Targeted Cancer Theragnosis

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Seong-Eun-
dc.contributor.authorLee, Bo-Ram-
dc.contributor.authorLee, Hohyeon-
dc.contributor.authorJo, Sung Duk-
dc.contributor.authorKim, Hyuncheol-
dc.contributor.authorWon, You-Yeon-
dc.contributor.authorLee, Jeewon-
dc.date.accessioned2021-09-02T21:56:42Z-
dc.date.available2021-09-02T21:56:42Z-
dc.date.created2021-06-16-
dc.date.issued2017-12-11-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/81191-
dc.description.abstractHere we report a novel assembly structure of near-infrared plasmonic gold nanoparticles (AuNPs), possessing both photoacoustic (PA) and photothermal (PT) properties. The template for the plasmonic AuNP assembly is a bioconjugate between short double-strand DNA (sh-dsDNA) and human methyl binding domain protein 1 (MBD1). MBD1 binds to methylated cytosine-guanine dinucleotides (mCGs) within the sequence of sh-dsDNA. Hexahistidine peptides on the engineered MBD1 function as a nucleation site for AuNP synthesis, allowing the construction of hybrid conjugates, sh-dsDNA-MBD1-AuNPs (named DMAs). By varying the length of sh-dsDNA backbone and the spacer between two adjacent mCGs, we synthesized three different DMAs (DMA_5mCG, DMA_9mCG, and DMA_21mCG), among which DMA_21mCG exhibited a comparable photothermal and surprisingly a higher photoacoustic signals, compared to a plasmonic gold nanorod. Further, epidermal growth factor receptor I (EGFR)-binding peptides are genetically attached to the MBD1 of DMA_21mCG, enabling its efficient endocytosis into EGFR-overexpressing cancer cells. Notably, the denaturation of MBD1 disassembled the DMA and accordingly released the individual small AuNPs (<5 nm) that can be easily cleared from the body through renal excretion without causing accumulation/toxicity problems. This DMA-based novel approach offers a promising platform for targeted cancer theragnosis based on simultaneous PA imaging and PT therapy.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectPHOTOTHERMAL THERAPY-
dc.subjectNANORODS-
dc.subjectTOXICITY-
dc.subjectNANOCRYSTALS-
dc.subjectCLEARANCE-
dc.subjectPEPTIDE-
dc.subjectAGENTS-
dc.titleNear-Infrared Plasmonic Assemblies of Gold Nanoparticles with Multimodal Function for Targeted Cancer Theragnosis-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Jeewon-
dc.identifier.doi10.1038/s41598-017-17714-2-
dc.identifier.scopusid2-s2.0-85054095227-
dc.identifier.wosid000417570500046-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.7-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume7-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusPHOTOTHERMAL THERAPY-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordPlusTOXICITY-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusCLEARANCE-
dc.subject.keywordPlusPEPTIDE-
dc.subject.keywordPlusAGENTS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jee won photo

Lee, Jee won
College of Engineering (Department of Chemical and Biological Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE