Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fine-sized Pt nanoparticles dispersed on PdPt bimetallic nanocrystals with non-covalently functionalized graphene toward synergistic effects on the oxygen reduction reaction

Authors
Cho, Kie YongYeom, Yong SikSeo, Heun YoungLee, Albert S.Do, Xuan HuyHong, Jun PyoJeong, Hae-KwonBaek, Kyung-YoulYoon, Ho Gyu
Issue Date
10-12월-2017
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
graphene oxides; bimetallic nanocrystals; electrocatalysts; core-shell structures; fuel cells; oxygen reduction reaction; synergistic effects
Citation
ELECTROCHIMICA ACTA, v.257, pp.412 - 422
Indexed
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
257
Start Page
412
End Page
422
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81196
DOI
10.1016/j.electacta.2017.10.075
ISSN
0013-4686
Abstract
To data, combination of Pt-based bimetallic nanocrysatals and the graphene support have significantly contributed to enhance the oxygen reduction reaction (ORR) performance relative to electrocatalysts based on monometallic Pt nanoparticles (NPs) primarily due to the unique ligand effects and benefits of the carbon support. In this study, we propose a new structure of bimetallic electrocatalysts to realize the synergistic effects on the ORR performance through effective integration of the fine-sized Pt NPs, PdPt bimetallic nanocrystals, and non-covalently functionalized graphene with ionic polymers. The facile wet-chemical methods were applied to synthesize fine-sized (2-5 nm) spherical Pt NPs doped large-sized (20-50 nm) non-spherical PdPt bimetallic NPs on the electronically negative ionic polymer-functionalized graphene support (Pt-on-PdPt/fG). This Pt-on-PdPt/fG with synergistic effects based on enlarged active surface area, ligand, and interfacial linking effects, exhibits substantially enhanced ORR activity (specific activity: 1.89 mA cm(Pt)(-2) at 0.9 V-RHE) and durability in comparison to the commercial Pt/C (specific activity: 0.23 mA cm(Pt)(-2) at 0.9 V-RHE). To this end, the effective integration of newly designed fine-sized Pt NPs doped bimetallic nanocrystals and unique graphene supports with the well-interactive ability could be a good platform to develop the advanced electrocatalysts for the efficient ORR. (C) 2017 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yoon, Ho Gyu photo

Yoon, Ho Gyu
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE