Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes

Full metadata record
DC Field Value Language
dc.contributor.authorJang, Yeonsik-
dc.contributor.authorKwon, Sung-Joo-
dc.contributor.authorShin, Jaeho-
dc.contributor.authorJeong, Hyunhak-
dc.contributor.authorHwang, Wang-Taek-
dc.contributor.authorKim, Junwoo-
dc.contributor.authorKoo, Jeongmin-
dc.contributor.authorKo, Taeg Yeoung-
dc.contributor.authorRyu, Sunmin-
dc.contributor.authorWang, Gunuk-
dc.contributor.authorLee, Tae-Woo-
dc.contributor.authorLee, Takhee-
dc.date.accessioned2021-09-02T21:58:34Z-
dc.date.available2021-09-02T21:58:34Z-
dc.date.created2021-06-16-
dc.date.issued2017-12-06-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/81205-
dc.description.abstractIn this study, we fabricated and characterized vertical molecular junctions consisting of self-assembled monolayers of benzenedithiol (BDT) with a p-doped multilayer graphene electrode. The p-type doping of a graphene film was performed by treating pristine graphene (work function of similar to 4.40 eV) with trifluoromethanesulfonic (TFMS) acid, producing a significantly increased work function (similar to 5.23 eV). The p-doped graphene-electrode molecular junctions statistically showed an order of magnitude higher current density and a lower charge injection barrier height than those of the pristine graphene-electrode molecular junctions, as a result of interface engineering. This enhancement is due to the increased work function of the TFMS-treated p-doped graphene electrode in the highest occupied molecular orbital-mediated tunneling molecular junctions. The validity of these results was proven by a theoretical analysis based on a coherent transport model that considers asymmetric couplings at the electrode-molecule interfaces.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSELF-ASSEMBLED MONOLAYERS-
dc.subjectFILMS-
dc.subjectCONTACTS-
dc.titleInterface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes-
dc.typeArticle-
dc.contributor.affiliatedAuthorWang, Gunuk-
dc.identifier.doi10.1021/acsami.7b13156-
dc.identifier.scopusid2-s2.0-85037748299-
dc.identifier.wosid000417669300044-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.9, no.48, pp.42043 - 42049-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume9-
dc.citation.number48-
dc.citation.startPage42043-
dc.citation.endPage42049-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSELF-ASSEMBLED MONOLAYERS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusCONTACTS-
dc.subject.keywordAuthormolecular electronics-
dc.subject.keywordAuthorinterface engineering-
dc.subject.keywordAuthorcharge transport-
dc.subject.keywordAuthorself-assembled monolayer-
dc.subject.keywordAuthorbenzenedithiol (BDT)-
dc.subject.keywordAuthorgraphene doping-
dc.subject.keywordAuthortransition voltage spectroscopy-
dc.subject.keywordAuthorcoherent transport model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE