An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Yibao | - |
dc.contributor.author | Kim, Junseok | - |
dc.contributor.author | Wang, Nan | - |
dc.date.accessioned | 2021-09-02T22:19:14Z | - |
dc.date.available | 2021-09-02T22:19:14Z | - |
dc.date.created | 2021-06-16 | - |
dc.date.issued | 2017-12 | - |
dc.identifier.issn | 1007-5704 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/81322 | - |
dc.description.abstract | In this paper, we propose an unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces. The discretization is performed via a surface mesh consisting of piecewise triangles and its dual-surface polygonal tessellation. The proposed scheme, which combines a Crank-Nicolson-type scheme with a linearly stabilized splitting scheme, is second-order accurate in time. The discrete system is shown to be conservative and unconditionally energy-stable. The resulting system of discrete equations is simple to implement, and can be solved using a biconjugate gradient stabilized method. We demonstrate the performance of our proposed algorithm through several numerical experiments. (C) 2017 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.subject | PARTIAL-DIFFERENTIAL-EQUATIONS | - |
dc.subject | FINITE-ELEMENT-METHOD | - |
dc.subject | PHASE-FIELD MODELS | - |
dc.subject | DENSITY-FUNCTIONAL THEORY | - |
dc.subject | NUMERICAL-METHOD | - |
dc.subject | DIBLOCK COPOLYMERS | - |
dc.subject | CONTINUUM APPROACH | - |
dc.subject | MESH GENERATOR | - |
dc.subject | SEPARATION | - |
dc.subject | EFFICIENT | - |
dc.title | An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Kim, Junseok | - |
dc.identifier.doi | 10.1016/j.cnsns.2017.05.006 | - |
dc.identifier.scopusid | 2-s2.0-85018874090 | - |
dc.identifier.wosid | 000404307400015 | - |
dc.identifier.bibliographicCitation | COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v.53, pp.213 - 227 | - |
dc.relation.isPartOf | COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | - |
dc.citation.title | COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | - |
dc.citation.volume | 53 | - |
dc.citation.startPage | 213 | - |
dc.citation.endPage | 227 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalResearchArea | Mechanics | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
dc.relation.journalWebOfScienceCategory | Mathematics, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Mechanics | - |
dc.relation.journalWebOfScienceCategory | Physics, Fluids & Plasmas | - |
dc.relation.journalWebOfScienceCategory | Physics, Mathematical | - |
dc.subject.keywordPlus | PARTIAL-DIFFERENTIAL-EQUATIONS | - |
dc.subject.keywordPlus | FINITE-ELEMENT-METHOD | - |
dc.subject.keywordPlus | PHASE-FIELD MODELS | - |
dc.subject.keywordPlus | DENSITY-FUNCTIONAL THEORY | - |
dc.subject.keywordPlus | NUMERICAL-METHOD | - |
dc.subject.keywordPlus | DIBLOCK COPOLYMERS | - |
dc.subject.keywordPlus | CONTINUUM APPROACH | - |
dc.subject.keywordPlus | MESH GENERATOR | - |
dc.subject.keywordPlus | SEPARATION | - |
dc.subject.keywordPlus | EFFICIENT | - |
dc.subject.keywordAuthor | Cahn-Hilliard equation | - |
dc.subject.keywordAuthor | Laplace-Beltrami operator | - |
dc.subject.keywordAuthor | Triangular surface mesh | - |
dc.subject.keywordAuthor | Unconditionally energy-stable | - |
dc.subject.keywordAuthor | Mass conservation | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.