Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces

Full metadata record
DC Field Value Language
dc.contributor.authorLi, Yibao-
dc.contributor.authorKim, Junseok-
dc.contributor.authorWang, Nan-
dc.date.accessioned2021-09-02T22:19:14Z-
dc.date.available2021-09-02T22:19:14Z-
dc.date.created2021-06-16-
dc.date.issued2017-12-
dc.identifier.issn1007-5704-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/81322-
dc.description.abstractIn this paper, we propose an unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces. The discretization is performed via a surface mesh consisting of piecewise triangles and its dual-surface polygonal tessellation. The proposed scheme, which combines a Crank-Nicolson-type scheme with a linearly stabilized splitting scheme, is second-order accurate in time. The discrete system is shown to be conservative and unconditionally energy-stable. The resulting system of discrete equations is simple to implement, and can be solved using a biconjugate gradient stabilized method. We demonstrate the performance of our proposed algorithm through several numerical experiments. (C) 2017 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectPARTIAL-DIFFERENTIAL-EQUATIONS-
dc.subjectFINITE-ELEMENT-METHOD-
dc.subjectPHASE-FIELD MODELS-
dc.subjectDENSITY-FUNCTIONAL THEORY-
dc.subjectNUMERICAL-METHOD-
dc.subjectDIBLOCK COPOLYMERS-
dc.subjectCONTINUUM APPROACH-
dc.subjectMESH GENERATOR-
dc.subjectSEPARATION-
dc.subjectEFFICIENT-
dc.titleAn unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.1016/j.cnsns.2017.05.006-
dc.identifier.scopusid2-s2.0-85018874090-
dc.identifier.wosid000404307400015-
dc.identifier.bibliographicCitationCOMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, v.53, pp.213 - 227-
dc.relation.isPartOfCOMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION-
dc.citation.titleCOMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION-
dc.citation.volume53-
dc.citation.startPage213-
dc.citation.endPage227-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusPARTIAL-DIFFERENTIAL-EQUATIONS-
dc.subject.keywordPlusFINITE-ELEMENT-METHOD-
dc.subject.keywordPlusPHASE-FIELD MODELS-
dc.subject.keywordPlusDENSITY-FUNCTIONAL THEORY-
dc.subject.keywordPlusNUMERICAL-METHOD-
dc.subject.keywordPlusDIBLOCK COPOLYMERS-
dc.subject.keywordPlusCONTINUUM APPROACH-
dc.subject.keywordPlusMESH GENERATOR-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordAuthorCahn-Hilliard equation-
dc.subject.keywordAuthorLaplace-Beltrami operator-
dc.subject.keywordAuthorTriangular surface mesh-
dc.subject.keywordAuthorUnconditionally energy-stable-
dc.subject.keywordAuthorMass conservation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE