Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption

Authors
Kwon, SoonbangKim, Tae-WookJang, SeonghoonLee, Jae-HwangKim, Nam DongJi, YongsungLee, Chul-HoTour, James M.Wang, Gunuk
Issue Date
4-10월-2017
Publisher
AMER CHEMICAL SOC
Keywords
memristor; metal-oxide; tantalum oxide; nonlinear switching; ultralow power consumption
Citation
ACS APPLIED MATERIALS & INTERFACES, v.9, no.39, pp.34015 - 34023
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
9
Number
39
Start Page
34015
End Page
34023
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/81941
DOI
10.1021/acsami.7b06918
ISSN
1944-8244
Abstract
A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method-for fabricating selector-less memristor arrays using an engineered nanoporous Ta2O5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (similar to 2.7 X 10(-6) W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta2O5-x layer. Our results, oil the basis of the structural .engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor. arrays with acceptable device, uniformity and low power consumption without the need for additional addressing selectors.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE