Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Porosity estimation by semi-supervised learning with sparsely available labeled samples

Full metadata record
DC Field Value Language
dc.contributor.authorLima, Luiz Alberto-
dc.contributor.authorGornitz, Nico-
dc.contributor.authorVarella, Luiz Eduardo-
dc.contributor.authorVellasco, Marley-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorNakajima, Shinichi-
dc.date.accessioned2021-09-03T01:58:57Z-
dc.date.available2021-09-03T01:58:57Z-
dc.date.created2021-06-16-
dc.date.issued2017-09-
dc.identifier.issn0098-3004-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/82305-
dc.description.abstractThis paper addresses the porosity estimation problem from seismic impedance volumes and porosity samples located in a small group of exploratory wells. Regression methods, trained on the impedance as inputs and the porosity as output labels, generally suffer from extremely expensive (and hence sparsely available) porosity samples. To optimally make use of the valuable porosity data, a semi-supervised machine learning method was proposed, Transductive Conditional Random Field Regression (TCRFR), showing good performance (Gornitz et al., 2017). TCRFR, however, still requires more labeled data than those usually available, which creates a gap when applying the method to the porosity estimation problem in realistic situations. In this paper, we aim to fill this gap by introducing two graph-based preprocessing techniques, which adapt the original TCRFR for extremely weakly supervised scenarios. Our new method outperforms the previous automatic estimation methods on synthetic data and provides a comparable result to the manual labored, time-consuming geostatistics approach on real data, proving its potential as a practical industrial tool.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectCOVARIATE SHIFT-
dc.subjectROCK-PHYSICS-
dc.subjectRESERVOIR-
dc.titlePorosity estimation by semi-supervised learning with sparsely available labeled samples-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1016/j.cageo.2017.05.004-
dc.identifier.scopusid2-s2.0-85020020104-
dc.identifier.wosid000407409700004-
dc.identifier.bibliographicCitationCOMPUTERS & GEOSCIENCES, v.106, pp.33 - 48-
dc.relation.isPartOfCOMPUTERS & GEOSCIENCES-
dc.citation.titleCOMPUTERS & GEOSCIENCES-
dc.citation.volume106-
dc.citation.startPage33-
dc.citation.endPage48-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaGeology-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryGeosciences, Multidisciplinary-
dc.subject.keywordPlusCOVARIATE SHIFT-
dc.subject.keywordPlusROCK-PHYSICS-
dc.subject.keywordPlusRESERVOIR-
dc.subject.keywordAuthorPorosity estimation-
dc.subject.keywordAuthorFacies classification-
dc.subject.keywordAuthorLatent variable-
dc.subject.keywordAuthorConditional random fields-
dc.subject.keywordAuthorRidge regression-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE