Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Time-resolved spectroscopic analysis of the light-energy harvesting mechanism in carbazole-dendrimers with a blue-phosphorescent Ir-complex core

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Yang-Jin-
dc.contributor.authorKim, So-Yoen-
dc.contributor.authorSon, Mi Rang-
dc.contributor.authorSon, Ho-Jin-
dc.contributor.authorCho, Dae Won-
dc.contributor.authorKang, Sang Ook-
dc.date.accessioned2021-09-03T03:02:07Z-
dc.date.available2021-09-03T03:02:07Z-
dc.date.created2021-06-16-
dc.date.issued2017-08-14-
dc.identifier.issn1463-9076-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/82562-
dc.description.abstractIn order to investigate the light-energy harvesting mechanism, a series of dendrimers with a heteroleptic iridium(III) complex core, [Ir(dmb)(2)(pic-Cz(n))] (Gn: n = 1, 2, and 3), with 2,6-difluoro-3-(4-methylpyridin2-yl)benzonitrile (dmb) as the cyclometallating ligand and 3-hydroxypicolinate (pic) as the ancillary ligand, connected to carbazole-based dendrons (Cz(n): n = 2, 4, and 8) was synthesized. The Ir centred complex [Ir(dmb)(2)(pic-OCH3), G0] shows a blue emission at <500 nm, which is assigned to metal-to-ligand charge-transfer ((MLCT)-M-3) phosphorescence. This phosphorescence was enhanced with increasing generations due to the increase in the total absorbance of the Cz-dendron. The light-harvesting efficiencies determined by various methods were approximately 160 (G1), 220 (G2), and 330% (G3). The energy transfer efficiencies for G1-G3 from the peripheral Cz-dendron to the Ir-core complex were above 97%, determined using the reduction in the lifetime of the excited (1)Cz*-dendrons. G1-G3 showed a transient absorption (TA) band at 600 nm, which was attributed to the S-n <- S-1 transition of the Cz-dendrons. The fast decay of these TA bands was consistent with the fast emission decay times. The time-resolved TA band correlated with the core Ir-complex was observed at 500 nm, though it overlapped and interfered with the intense TA band of the Cz-dendrons. Therefore, we attempted a global analysis by singular value decomposition (SVD). The determination of the absorption spectra of the individual species participating in the energy transfer process by SVD analysis can distinguish between different mechanistic models. The analysed rate constants were consistent with the results determined by the emission decays.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectDENDRITIC MACROMOLECULES-
dc.subjectIRIDIUM(III) COMPLEXES-
dc.subjectELECTRON-TRANSFER-
dc.subjectCHARGE-TRANSPORT-
dc.subjectSPECTRA-
dc.subjectSYSTEM-
dc.subjectDYNAMICS-
dc.subjectLIGANDS-
dc.titleTime-resolved spectroscopic analysis of the light-energy harvesting mechanism in carbazole-dendrimers with a blue-phosphorescent Ir-complex core-
dc.typeArticle-
dc.contributor.affiliatedAuthorSon, Ho-Jin-
dc.contributor.affiliatedAuthorKang, Sang Ook-
dc.identifier.doi10.1039/c7cp01989k-
dc.identifier.scopusid2-s2.0-85027350982-
dc.identifier.wosid000407053000061-
dc.identifier.bibliographicCitationPHYSICAL CHEMISTRY CHEMICAL PHYSICS, v.19, no.30, pp.20093 - 20100-
dc.relation.isPartOfPHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.citation.titlePHYSICAL CHEMISTRY CHEMICAL PHYSICS-
dc.citation.volume19-
dc.citation.number30-
dc.citation.startPage20093-
dc.citation.endPage20100-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusDENDRITIC MACROMOLECULES-
dc.subject.keywordPlusIRIDIUM(III) COMPLEXES-
dc.subject.keywordPlusELECTRON-TRANSFER-
dc.subject.keywordPlusCHARGE-TRANSPORT-
dc.subject.keywordPlusSPECTRA-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusLIGANDS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE