Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Phase separation suppression in InxGa1-xN on a Si substrate using an indium modulation technique

Full metadata record
DC Field Value Language
dc.contributor.authorWoo, Hyeonseok-
dc.contributor.authorJo, Hansol-
dc.contributor.authorKim, Jongmin-
dc.contributor.authorCho, Sangeun-
dc.contributor.authorJo, Yongcheol-
dc.contributor.authorRoh, Cheong Hyun-
dc.contributor.authorLee, Jun Ho-
dc.contributor.authorSeo, Yonggon-
dc.contributor.authorPark, Jungho-
dc.contributor.authorKim, Hyungsang-
dc.contributor.authorHahn, Cheol-Koo-
dc.contributor.authorIm, Hyunsik-
dc.date.accessioned2021-09-03T03:28:28Z-
dc.date.available2021-09-03T03:28:28Z-
dc.date.created2021-06-16-
dc.date.issued2017-08-
dc.identifier.issn1567-1739-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/82693-
dc.description.abstractA high quality, single phase InGaN film is fabricated on a GaN/Si (111) substrate by optimizing the pulse patterned In supply with a plasma-assisted MBE technique. Compositional phase separation in InGaN is considerably suppressed. The optical and structural properties of the single phase InGaN epitaxial film are consistently confirmed by atomic force microscopy, X-ray diffraction and photoluminescence measurements. We propose a growth mechanism for single phase InGaN in terms of optimal incorporation and surface migration of In atoms. (C) 2017 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectMULTIPLE-QUANTUM WELLS-
dc.subjectLIGHT-EMITTING-DIODES-
dc.subjectINGAN FILMS-
dc.subjectRF-MBE-
dc.subjectGROWTH-
dc.subjectEPITAXY-
dc.subjectGAN-
dc.subjectFLUCTUATION-
dc.subjectDEPENDENCE-
dc.subjectGALLIUM-
dc.titlePhase separation suppression in InxGa1-xN on a Si substrate using an indium modulation technique-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Jungho-
dc.identifier.doi10.1016/j.cap.2017.05.003-
dc.identifier.scopusid2-s2.0-85019229098-
dc.identifier.wosid000403027500018-
dc.identifier.bibliographicCitationCURRENT APPLIED PHYSICS, v.17, no.8, pp.1142 - 1147-
dc.relation.isPartOfCURRENT APPLIED PHYSICS-
dc.citation.titleCURRENT APPLIED PHYSICS-
dc.citation.volume17-
dc.citation.number8-
dc.citation.startPage1142-
dc.citation.endPage1147-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusMULTIPLE-QUANTUM WELLS-
dc.subject.keywordPlusLIGHT-EMITTING-DIODES-
dc.subject.keywordPlusINGAN FILMS-
dc.subject.keywordPlusRF-MBE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusEPITAXY-
dc.subject.keywordPlusGAN-
dc.subject.keywordPlusFLUCTUATION-
dc.subject.keywordPlusDEPENDENCE-
dc.subject.keywordPlusGALLIUM-
dc.subject.keywordAuthorInGaN-
dc.subject.keywordAuthorMBE-
dc.subject.keywordAuthorMetal modulation epitaxy-
dc.subject.keywordAuthorPhase separation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE