Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High microporosity of carbide-derived carbon prepared from a vacuum-treated precursor for energy storage devices

Full metadata record
DC Field Value Language
dc.contributor.authorYeon, Sun-Hwa-
dc.contributor.authorKim, Dong-Ha-
dc.contributor.authorLee, Sang-Ho-
dc.contributor.authorNam, Seong-Sik-
dc.contributor.authorPark, Se-Kook-
dc.contributor.authorSo, Jae Young-
dc.contributor.authorShin, Kyoung-Hee-
dc.contributor.authorJin, Chang-Soo-
dc.contributor.authorPark, Youngjune-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-03T04:22:42Z-
dc.date.available2021-09-03T04:22:42Z-
dc.date.created2021-06-16-
dc.date.issued2017-07-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/82926-
dc.description.abstractCarbide-derived carbon (CDC) is an attractive electrode material for electrochemical applications because diverse pore textures and structures can be controlled by changing the properties of the precursor template and the synthesis conditions. Upon the tailoring of the micro-pore texture and graphitic structure of CDCs via a pre-vacuum treatment of a carbide precursor, the electrode shows a greatly high increased capacitance under a range of scan rates from 2 mV/s to 10 mV/s. The specific capacitance of a CDC chlorinated at 1000 degrees C from a pre-vacuum-treated at 1700 degrees C was 150 F/g at 2 mV/s, which is approximately 60% higher than that of a CDC chlorinated at 1000 degrees C. (C) 2017 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectDOUBLE-LAYER CAPACITY-
dc.subjectVOLTAGE SWEEP METHOD-
dc.subjectELECTRODE MATERIALS-
dc.subjectPERFORMANCE-
dc.titleHigh microporosity of carbide-derived carbon prepared from a vacuum-treated precursor for energy storage devices-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1016/j.carbon.2017.03.063-
dc.identifier.scopusid2-s2.0-85015929455-
dc.identifier.wosid000401120800038-
dc.identifier.bibliographicCitationCARBON, v.118, pp.327 - 338-
dc.relation.isPartOfCARBON-
dc.citation.titleCARBON-
dc.citation.volume118-
dc.citation.startPage327-
dc.citation.endPage338-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusDOUBLE-LAYER CAPACITY-
dc.subject.keywordPlusVOLTAGE SWEEP METHOD-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusPERFORMANCE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE