Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Mechanical strength improvement of aluminum foam-reinforced matrix for molten carbonate fuel cells

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Mihui-
dc.contributor.authorLee, Chang-Whan-
dc.contributor.authorHam, Hyung-Chul-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorYoon, Sung Pil-
dc.contributor.authorLee, Ki Bong-
dc.date.accessioned2021-09-03T04:50:30Z-
dc.date.available2021-09-03T04:50:30Z-
dc.date.created2021-06-16-
dc.date.issued2017-06-22-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/83097-
dc.description.abstractDuring the cell operation of molten carbonate fuel cells (MCFCs), matrix cracks caused by poor mechanical strength accelerate cell performance degradation. Therefore, for a stable long-term cell operation, the improvement of mechanical properties of matrix is highly required. In this study, aluminum foam was used to enhance the mechanical strength of the matrix as a 3D (three dimensional) support structure. Unlikely conventional matrix (pure alpha-LiAlO2 matrix) which has paste-like structure at the MCFC operating temperature, Al foam-reinforced alpha-LiAlO2 matrix has significantly strong mechanical strength because the 3D network structure of Al foam can form the harden alumina skin layer during a cell operation. As a result, the mechanical strength of the Al foam-reinforced alpha-LiAlO2 matrix was enhanced by 9 times higher than the pure alpha-LiAlO2 matrix in a 3-point bending test. In addition, thermal cycle test showed notable cell stability due to strong mechanical strength of Al foam-reinforced alpha-LiAlO2 matrix. The Al foam-reinforced alpha-LiAlO2 matrix shows appropriate microstructure to preserve the liquid electrolyte when performing the mercury porosimeter analysis and differential pressure test between anode and cathode. Moreover, evaluation of stability and durability for a long-term cell operation were demonstrated by single cell test for 1,000 h. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectLONG-TERM OPERATION-
dc.subjectALPHA-LIALO2 MATRICES-
dc.subjectFABRICATION-
dc.subjectSTABILITY-
dc.subjectLIALO2-
dc.titleMechanical strength improvement of aluminum foam-reinforced matrix for molten carbonate fuel cells-
dc.typeArticle-
dc.contributor.affiliatedAuthorHan, Jonghee-
dc.contributor.affiliatedAuthorLee, Ki Bong-
dc.identifier.doi10.1016/j.ijhydene.2017.03.096-
dc.identifier.scopusid2-s2.0-85020395542-
dc.identifier.wosid000405251500022-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.42, no.25, pp.16235 - 16243-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume42-
dc.citation.number25-
dc.citation.startPage16235-
dc.citation.endPage16243-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.subject.keywordPlusLONG-TERM OPERATION-
dc.subject.keywordPlusALPHA-LIALO2 MATRICES-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusLIALO2-
dc.subject.keywordAuthorMolten carbonate fuel cell (MCFC)-
dc.subject.keywordAuthorMatrix-
dc.subject.keywordAuthorMechanical strength-
dc.subject.keywordAuthorAluminum foam-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > GREEN SCHOOL (Graduate School of Energy and Environment) > 1. Journal Articles
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Ki Bong photo

Lee, Ki Bong
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE