Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multi-Task Diagnosis for Autism Spectrum Disorders Using Multi-Modality Features: A Multi-Center Study

Authors
Wang, JunWang, QianPeng, JialinNie, DongZhao, FengKim, MinjeongZhang, HanWee, Chong-YawWang, ShitongShen, Dinggang
Issue Date
6월-2017
Publisher
WILEY
Keywords
multitask learning; multi-modality data; feature selection; task-task relation; modality-modality relation; autism spectrum disorders
Citation
HUMAN BRAIN MAPPING, v.38, no.6, pp.3081 - 3097
Indexed
SCIE
SCOPUS
Journal Title
HUMAN BRAIN MAPPING
Volume
38
Number
6
Start Page
3081
End Page
3097
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/83276
DOI
10.1002/hbm.23575
ISSN
1065-9471
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disease characterized by impairment of social interaction, language, behavior, and cognitive functions. Up to now, many imaging-based methods for ASD diagnosis have been developed. For example, one may extract abundant features from multi-modality images and then derive a discriminant function to map the selected features toward the disease label. A lot of recent works, however, are limited to single imaging centers. To this end, we propose a novel multi-modality multi-center classification (M3CC) method for ASD diagnosis. We treat the classification of each imaging center as one task. By introducing the task-task and modality-modality regularizations, we solve the classification for all imaging centers simultaneously. Meanwhile, the optimal feature selection and the modeling of the discriminant functions can be jointly conducted for highly accurate diagnosis. Besides, we also present an efficient iterative optimization solution to our formulated problem and further investigate its convergence. Our comprehensive experiments on the ABIDE database show that our proposed method can significantly improve the performance of ASD diagnosis, compared to the existing methods. (C) 2017 Wiley Periodicals, Inc.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE