Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Illumination normalisation using convolutional neural network with application to face recognition

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Y. -H.-
dc.contributor.authorKim, H.-
dc.contributor.authorKim, S. -W.-
dc.contributor.authorKim, H. -Y.-
dc.contributor.authorKo, S. -J.-
dc.date.accessioned2021-09-03T08:21:44Z-
dc.date.available2021-09-03T08:21:44Z-
dc.date.created2021-06-16-
dc.date.issued2017-03-16-
dc.identifier.issn0013-5194-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/84134-
dc.description.abstractA novel illumination normalisation (IN) method using a convolutional neural network (CNN) is proposed. The proposed network is composed of the local pattern extraction (LPE) and illumination elimination (IE) layers. The LPE layers model the relationships between the pixels in each local region in order to handle various types of local shadow and shading in the face image. Based on the commonly used assumption about the illumination field, the IE layers generate illumination-insensitive ratio images by calculating the ratio between the output pairs produced from the LPE layers. The final feature map obtained by combining the ratio images can possess an improved discriminative ability for face recognition (FR). For training the proposed network, the results produced by the Weber fraction-based IN methods as ground truths are utilised. The experimental results demonstrate that the proposed network performs better in terms of FR accuracy compared with the conventional non-CNN-based method and it can be combined with any CNN-based face classifier.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherINST ENGINEERING TECHNOLOGY-IET-
dc.titleIllumination normalisation using convolutional neural network with application to face recognition-
dc.typeArticle-
dc.contributor.affiliatedAuthorKo, S. -J.-
dc.identifier.doi10.1049/el.2017.0023-
dc.identifier.scopusid2-s2.0-85015761161-
dc.identifier.wosid000398587700022-
dc.identifier.bibliographicCitationELECTRONICS LETTERS, v.53, no.6-
dc.relation.isPartOfELECTRONICS LETTERS-
dc.citation.titleELECTRONICS LETTERS-
dc.citation.volume53-
dc.citation.number6-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordAuthorfeedforward neural nets-
dc.subject.keywordAuthorface recognition-
dc.subject.keywordAuthorlearning (artificial intelligence)-
dc.subject.keywordAuthorimage classification-
dc.subject.keywordAuthorIllumination normalisation-
dc.subject.keywordAuthorconvolutional neural network-
dc.subject.keywordAuthorface recognition-
dc.subject.keywordAuthorCNN-
dc.subject.keywordAuthorlocal pattern extraction-
dc.subject.keywordAuthorillumination elimination layers-
dc.subject.keywordAuthorLPE layers-
dc.subject.keywordAuthorimage pixels-
dc.subject.keywordAuthorlocal region-
dc.subject.keywordAuthorlocal shadow-
dc.subject.keywordAuthorlocal shading-
dc.subject.keywordAuthorIE layers-
dc.subject.keywordAuthorillumination-insensitive ratio images-
dc.subject.keywordAuthorfeature map-
dc.subject.keywordAuthorimproved discriminative ability-
dc.subject.keywordAuthorFR-
dc.subject.keywordAuthorWeber fraction-based IN method-
dc.subject.keywordAuthorground truths-
dc.subject.keywordAuthorCNN-based face classifier-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE