Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep Learning in Medical Image Analysis

Full metadata record
DC Field Value Language
dc.contributor.authorShen, Dinggang-
dc.contributor.authorWu, Guorong-
dc.contributor.authorSuk, Heung-Il-
dc.date.accessioned2021-09-03T14:51:34Z-
dc.date.available2021-09-03T14:51:34Z-
dc.date.created2021-06-16-
dc.date.issued2017-
dc.identifier.issn1523-9829-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/86262-
dc.description.abstractThis review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherANNUAL REVIEWS-
dc.subjectCONVOLUTIONAL NEURAL-NETWORKS-
dc.subjectBRAIN-TUMOR SEGMENTATION-
dc.subjectAUTOMATIC SEGMENTATION-
dc.subjectMR-IMAGES-
dc.subjectDEFORMABLE REGISTRATION-
dc.subjectCT-
dc.subjectCLASSIFICATION-
dc.subjectREPRESENTATION-
dc.subjectAUTOENCODERS-
dc.subjectARCHITECTURE-
dc.titleDeep Learning in Medical Image Analysis-
dc.typeArticle-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.contributor.affiliatedAuthorSuk, Heung-Il-
dc.identifier.doi10.1146/annurev-bioeng-071516-044442-
dc.identifier.scopusid2-s2.0-85021145223-
dc.identifier.wosid000404990000009-
dc.identifier.bibliographicCitationANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 19, v.19, pp.221 - 248-
dc.relation.isPartOfANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 19-
dc.citation.titleANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 19-
dc.citation.volume19-
dc.citation.startPage221-
dc.citation.endPage248-
dc.type.rimsART-
dc.type.docTypeReview; Book Chapter-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.subject.keywordPlusCONVOLUTIONAL NEURAL-NETWORKS-
dc.subject.keywordPlusBRAIN-TUMOR SEGMENTATION-
dc.subject.keywordPlusAUTOMATIC SEGMENTATION-
dc.subject.keywordPlusMR-IMAGES-
dc.subject.keywordPlusDEFORMABLE REGISTRATION-
dc.subject.keywordPlusCT-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusREPRESENTATION-
dc.subject.keywordPlusAUTOENCODERS-
dc.subject.keywordPlusARCHITECTURE-
dc.subject.keywordAuthormedical image analysis-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorunsupervised feature learning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE