Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sequence-Independent, Single-Primer Amplification Next-Generation Sequencing of Hantaan Virus Cell Culture-Based Isolates

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Dong Hyun-
dc.contributor.authorKim, Won-Keun-
dc.contributor.authorGu, Se Hun-
dc.contributor.authorLee, Daesang-
dc.contributor.authorKim, Jeong-Ah-
dc.contributor.authorNo, Jin Sun-
dc.contributor.authorLee, Seung-Ho-
dc.contributor.authorWiley, Michael R.-
dc.contributor.authorPalacios, Gustavo-
dc.contributor.authorSong, Jin-Won-
dc.contributor.authorJeong, Seong Tae-
dc.date.accessioned2021-09-03T15:09:42Z-
dc.date.available2021-09-03T15:09:42Z-
dc.date.created2021-06-16-
dc.date.issued2017-
dc.identifier.issn0002-9637-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/86367-
dc.description.abstractHantaan virus (HTNV), identified in the striped field mouse (Apodemus agrarius), belongs to the genus Hantavirus of the family Bunyaviridae and contains tripartite RNA genomes, small (S), medium (M), and large (L) segments. HTNV is a major causative for hemorrhagic fever with renal syndrome (HFRS) with fatality rates ranging from 1% to 15% in the Republic of Korea (ROK) and China. Defining of HTNV whole-genome sequences and isolation of the infectious particle play a critical role in the characterization and preventive and therapeutic strategies of hantavirus outbreaks. Next-generation sequencing (NGS) provides an advanced tool for massive genomic sequencing of viruses. However, the isolation of viral infectious particles is a huge obstacle to investigate and develop anti-virals for hantaviruses. Here, we report 12 HTNV isolates from lung tissues of the striped field mouse in the highly HFRS-endemic areas. Sequence-independent, single-primer amplification (SISPA) NGS was attempted to recover the genomic sequences of HTNV isolates. The nucleotide sequence of HTNV S, M, and L segments were covered up to 99.4-100%, 97.5-100%, and 95.6-99.8%, respectively, based on the full length of the prototype HTNV 76-118. The whole-genome sequencing of HTNV isolates was accomplished by additional reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification cDNA ends (RACE) PCR. In conclusion, this study will lead to the attempt and usage of SISPA NGS technologies to delineate the whole-genome sequence of hantaviruses, providing a new era of viral genomics for the surveillance, trace, and disease risk management of HFRS incidents.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER SOC TROP MED & HYGIENE-
dc.subjectDIAGNOSTIC VIROLOGY-
dc.subjectHEMORRHAGIC-FEVER-
dc.subjectRENAL SYNDROME-
dc.subjectTECHNOLOGIES-
dc.subjectHANTAVIRUS-
dc.subjectINFECTION-
dc.subjectEVOLUTION-
dc.subjectCLONING-
dc.titleSequence-Independent, Single-Primer Amplification Next-Generation Sequencing of Hantaan Virus Cell Culture-Based Isolates-
dc.typeArticle-
dc.contributor.affiliatedAuthorSong, Jin-Won-
dc.identifier.doi10.4269/ajtmh.16-0683-
dc.identifier.scopusid2-s2.0-85014556962-
dc.identifier.wosid000401767400024-
dc.identifier.bibliographicCitationAMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, v.96, no.2, pp.389 - 394-
dc.relation.isPartOfAMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE-
dc.citation.titleAMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE-
dc.citation.volume96-
dc.citation.number2-
dc.citation.startPage389-
dc.citation.endPage394-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalResearchAreaTropical Medicine-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryTropical Medicine-
dc.subject.keywordPlusDIAGNOSTIC VIROLOGY-
dc.subject.keywordPlusHEMORRHAGIC-FEVER-
dc.subject.keywordPlusRENAL SYNDROME-
dc.subject.keywordPlusTECHNOLOGIES-
dc.subject.keywordPlusHANTAVIRUS-
dc.subject.keywordPlusINFECTION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusCLONING-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Song, Jin Won photo

Song, Jin Won
의과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE