Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Fine Tuning of Colloidal CdSe Quantum Dot Photovoltaic Properties by Microfluidic Reactors

Authors
Jeong, Da-WoonPark, Ji YoungKim, Taek-SooSeong, Tae-YeonKim, Jae-YupKo, Min JaeKim, Bum Sung
Issue Date
20-12월-2016
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
CdSe; Quantum Dots; Microfluidic Reactors; Microreactor; QDSC
Citation
ELECTROCHIMICA ACTA, v.222, pp.1668 - 1676
Indexed
SCIE
SCOPUS
Journal Title
ELECTROCHIMICA ACTA
Volume
222
Start Page
1668
End Page
1676
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/86521
DOI
10.1016/j.electacta.2016.11.157
ISSN
0013-4686
Abstract
Colloidal quantum dots (QDs) are attractive materials for application in photovoltaic and photo-electrochemical devices, due to their unique properties including band energy tunability, high absorption coefficient and multiple exciton generation. Here, we construct continuous and automated microfluidic reactors for the synthesis of CdSe QDs, and apply the synthesized QDs to the QD-sensitized solar cells (QDSCs) as a photosensitizer. The spectral range, quantum yield (QY) and surface states of QDs are facilely and finely tuned by controlling the flow rates of precursor solutions and solvents in the microfluidic reactors. The photovoltaic and photoelectrochemical performances of QDSCs are strongly affected by both the spectral range and QY of CdSe QDs. In particular, the conversion efficiency is enhanced by about 19% with the increase in QY from 15.4% to 23.2%, at the same spectral range. Furthermore, the enhanced surface purity of QDs by modified synthetic condition leads to the reduced electron recombination in the QD-sensitized TiO2 electrodes, which is confirmed by electrochemical impedance analysis. This study demonstrates the great potential of microfluidic system for the synthesis QDs and their application in photoelectrochemical solar cells. (C) 2016 Published by Elsevier Ltd.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SEONG, TAE YEON photo

SEONG, TAE YEON
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE