Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Covalent Immobilization of MSC-Affinity Peptide on Poly(L-lactide-co-epsilon-caprolactone) Copolymer to Enhance Stem Cell Adhesion and Retention for Tissue Engineering Applications

Full metadata record
DC Field Value Language
dc.contributor.authorShafiq, Muhammad-
dc.contributor.authorKim, Soo Hyun-
dc.date.accessioned2021-09-03T17:14:17Z-
dc.date.available2021-09-03T17:14:17Z-
dc.date.created2021-06-16-
dc.date.issued2016-11-
dc.identifier.issn1598-5032-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/86905-
dc.description.abstractElectrospun nanofibers mimicking the extracellular microenvironment have tremendous potential for tissue regeneration applications. However, a lack of bioactive functionalities limits the effective utilization of nanofibers fabricated from synthetic biodegradable polymers. The objective of this study was to conjugate mesenchymal stem cell affinity peptide (EPLQLKM, E7) with star-shaped poly(L-lactide-co-epsilon-caprolactone) (PLCL) copolymer and to evaluate the potential of this modified polymer to enhance stem cell adhesion and proliferation in vitro. MSC-adhesive peptide was covalently conjugated with the hydroxyl functionalities of the star-shaped PLCL copolymer and nanofibers were prepared by mixing appropriate proportions of linear PLCL and E7-conjugated star-shaped PLCL copolymers using electrospinning. Nuclear magnetic resonance and amino acid composition analysis revealed that E7 was successfully conjugated to PLCL copolymers. Nanofibers were smooth and homogenous as examined using scanning electron micrography. Nanofibrous meshes containing PLCL-E7 showed significantly higher cell viability and proliferation compared with the control group. In addition, cells spread well on meshes containing PLCL-E7 compared with the control group. The strategy adopted here may be very useful for designing stem cell adhesive polymeric biomaterials to enhance stem cell-based tissue repair. In addition, E7-immobilized PLCL copolymers can be fabricated into different shapes and structures as needed for various tissue engineering applications.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subjectSURFACE MODIFICATION-
dc.subjectCARTILAGE REGENERATION-
dc.subjectVASCULAR GRAFTS-
dc.subjectGROWTH-FACTOR-
dc.subjectRGD PEPTIDE-
dc.subjectIN-VIVO-
dc.subjectSCAFFOLDS-
dc.subjectDIFFERENTIATION-
dc.subjectBIOMATERIALS-
dc.subjectANGIOGENESIS-
dc.titleCovalent Immobilization of MSC-Affinity Peptide on Poly(L-lactide-co-epsilon-caprolactone) Copolymer to Enhance Stem Cell Adhesion and Retention for Tissue Engineering Applications-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Soo Hyun-
dc.identifier.doi10.1007/s13233-016-4138-x-
dc.identifier.scopusid2-s2.0-84991677834-
dc.identifier.wosid000389799600007-
dc.identifier.bibliographicCitationMACROMOLECULAR RESEARCH, v.24, no.11, pp.986 - 994-
dc.relation.isPartOfMACROMOLECULAR RESEARCH-
dc.citation.titleMACROMOLECULAR RESEARCH-
dc.citation.volume24-
dc.citation.number11-
dc.citation.startPage986-
dc.citation.endPage994-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusSURFACE MODIFICATION-
dc.subject.keywordPlusCARTILAGE REGENERATION-
dc.subject.keywordPlusVASCULAR GRAFTS-
dc.subject.keywordPlusGROWTH-FACTOR-
dc.subject.keywordPlusRGD PEPTIDE-
dc.subject.keywordPlusIN-VIVO-
dc.subject.keywordPlusSCAFFOLDS-
dc.subject.keywordPlusDIFFERENTIATION-
dc.subject.keywordPlusBIOMATERIALS-
dc.subject.keywordPlusANGIOGENESIS-
dc.subject.keywordAuthorMSC-adhesive peptide-
dc.subject.keywordAuthorstem cell adhesion-
dc.subject.keywordAuthorelectrospinning-
dc.subject.keywordAuthortissue engineering-
dc.subject.keywordAuthorstem cell homing-
dc.subject.keywordAuthorPLCL copolymer-
dc.subject.keywordAuthorscaffolds-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > KU-KIST Graduate School of Converging Science and Technology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE