Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

EEG-based BCI for the linear control of an upper-limb neuroprosthesis

Full metadata record
DC Field Value Language
dc.contributor.authorVidaurre, Carmen-
dc.contributor.authorKlauer, Christian-
dc.contributor.authorSchauer, Thomas-
dc.contributor.authorRamos-Murguialday, Ander-
dc.contributor.authorMueller, Klaus-Robert-
dc.date.accessioned2021-09-03T17:26:24Z-
dc.date.available2021-09-03T17:26:24Z-
dc.date.created2021-06-16-
dc.date.issued2016-11-
dc.identifier.issn1350-4533-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/86965-
dc.description.abstractAssistive technologies help patients to reacquire interacting capabilities with the environment and improve their quality of life. In this manuscript we present a feasibility study in which healthy users were able to use a non-invasive Motor Imagery (MI)-based brain computer interface (BCI) to achieve linear control of an upper-limb functional electrical stimulation (FES) controlled neuro-prosthesis. The linear control allowed the real-time computation of a continuous control signal that was used by the FES system to physically set the stimulation parameters to control the upper-limb position. Even if the nature of the task makes the operation very challenging, the participants achieved a mean selection accuracy of 82.5% in a target selection experiment. An analysis of limb kinematics as well as the positioning precision was performed, showing the viability of using a BCI FES system to control upper-limb reaching movements. The results of this study constitute an accurate use of an online non-invasive BCI to operate a FES-neuroprosthesis setting a step toward the recovery of the control of an impaired limb with the sole use of brain activity. (C) 2016 IPEM. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.subjectBRAIN-COMPUTER INTERFACES-
dc.subjectMOTOR IMAGERY-
dc.titleEEG-based BCI for the linear control of an upper-limb neuroprosthesis-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1016/j.medengphy.2016.06.010-
dc.identifier.scopusid2-s2.0-84994493633-
dc.identifier.wosid000387197800007-
dc.identifier.bibliographicCitationMEDICAL ENGINEERING & PHYSICS, v.38, no.11, pp.1195 - 1204-
dc.relation.isPartOfMEDICAL ENGINEERING & PHYSICS-
dc.citation.titleMEDICAL ENGINEERING & PHYSICS-
dc.citation.volume38-
dc.citation.number11-
dc.citation.startPage1195-
dc.citation.endPage1204-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.subject.keywordPlusBRAIN-COMPUTER INTERFACES-
dc.subject.keywordPlusMOTOR IMAGERY-
dc.subject.keywordAuthorBrain computer interfacing-
dc.subject.keywordAuthorMotor imagery-
dc.subject.keywordAuthorNeuralprosthesis-
dc.subject.keywordAuthorFunctional electrical stimulation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE