Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multiscale temporal neural dynamics predict performance in a complex sensorimotor task

Full metadata record
DC Field Value Language
dc.contributor.authorSamek, Wojciech-
dc.contributor.authorBlythe, Duncan A. J.-
dc.contributor.authorCurio, Gabriel-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorBlankertz, Benjamin-
dc.contributor.authorNikulin, Vadim V.-
dc.date.accessioned2021-09-03T17:32:36Z-
dc.date.available2021-09-03T17:32:36Z-
dc.date.created2021-06-16-
dc.date.issued2016-11-
dc.identifier.issn1053-8119-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/86998-
dc.description.abstractOngoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations. The neuronal dynamics were estimated with multichannel EEG. Our results show that: (a) BCI task accuracy may be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal brain functioning. (C) 2016 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.subjectBRAIN-COMPUTER INTERFACE-
dc.subjectNEURONAL AVALANCHES-
dc.subjectCORTICAL NETWORKS-
dc.subjectSCALING BEHAVIOR-
dc.subjectRANGE-
dc.subjectOSCILLATIONS-
dc.subjectALPHA-
dc.subjectEEG-
dc.subjectCRITICALITY-
dc.subjectATTENTION-
dc.titleMultiscale temporal neural dynamics predict performance in a complex sensorimotor task-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1016/j.neuroimage.2016.06.056-
dc.identifier.scopusid2-s2.0-84982792291-
dc.identifier.wosid000384074500025-
dc.identifier.bibliographicCitationNEUROIMAGE, v.141, pp.291 - 303-
dc.relation.isPartOfNEUROIMAGE-
dc.citation.titleNEUROIMAGE-
dc.citation.volume141-
dc.citation.startPage291-
dc.citation.endPage303-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalWebOfScienceCategoryNeuroimaging-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusBRAIN-COMPUTER INTERFACE-
dc.subject.keywordPlusNEURONAL AVALANCHES-
dc.subject.keywordPlusCORTICAL NETWORKS-
dc.subject.keywordPlusSCALING BEHAVIOR-
dc.subject.keywordPlusRANGE-
dc.subject.keywordPlusOSCILLATIONS-
dc.subject.keywordPlusALPHA-
dc.subject.keywordPlusEEG-
dc.subject.keywordPlusCRITICALITY-
dc.subject.keywordPlusATTENTION-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE