Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Moon Soo | - |
dc.contributor.author | Lee, Hoseong | - |
dc.contributor.author | Hwang, Yunho | - |
dc.contributor.author | Radermacher, Reinhard | - |
dc.contributor.author | Jeong, Hee-Moon | - |
dc.date.accessioned | 2021-09-03T18:07:05Z | - |
dc.date.available | 2021-09-03T18:07:05Z | - |
dc.date.created | 2021-06-16 | - |
dc.date.issued | 2016-10-25 | - |
dc.identifier.issn | 1359-4311 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/87147 | - |
dc.description.abstract | A vapor compression cycle, which is typically utilized for the heat pump, air conditioning and refrigeration systems, has inherent thermodynamic losses associated with expansion and compression processes. To minimize these losses and improve the energy efficiency of the vapor compression cycle, an ejector can be applied. However, due to the occurrence of complex physics i.e., non-equilibrium flashing compressible flow in the nozzle with possible shock interactions, it has not been feasible to model or optimize the design of a two-phase ejector. In this study, a homogeneous, non-equilibrium, two-phase flow computational fluid dynamics (CFD) model in a commercial code is used with an in-house empirical correlation for the mass transfer coefficient and real gas properties to perform a geometric optimization of a two-phase ejector. The model is first validated With experimental data of an ejector with R600a as the working fluid. After that, the design parameters of the ejector are optimized using multi-objective genetic algorithm (MOGA) based online approximation-assisted optimization (OAAO) approaches to find the maximum performance. (C) 2016 Elsevier Ltd. All rights reserved. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | - |
dc.subject | SINGLE-PHASE | - |
dc.subject | SHAPE | - |
dc.subject | FLOW | - |
dc.title | Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Lee, Hoseong | - |
dc.identifier.doi | 10.1016/j.applthermaleng.2016.08.078 | - |
dc.identifier.scopusid | 2-s2.0-84990055876 | - |
dc.identifier.wosid | 000384861300027 | - |
dc.identifier.bibliographicCitation | APPLIED THERMAL ENGINEERING, v.109, pp.272 - 282 | - |
dc.relation.isPartOf | APPLIED THERMAL ENGINEERING | - |
dc.citation.title | APPLIED THERMAL ENGINEERING | - |
dc.citation.volume | 109 | - |
dc.citation.startPage | 272 | - |
dc.citation.endPage | 282 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Thermodynamics | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Mechanics | - |
dc.relation.journalWebOfScienceCategory | Thermodynamics | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Engineering, Mechanical | - |
dc.relation.journalWebOfScienceCategory | Mechanics | - |
dc.subject.keywordPlus | SINGLE-PHASE | - |
dc.subject.keywordPlus | SHAPE | - |
dc.subject.keywordPlus | FLOW | - |
dc.subject.keywordAuthor | Ejector | - |
dc.subject.keywordAuthor | R600a | - |
dc.subject.keywordAuthor | Two-phase | - |
dc.subject.keywordAuthor | CFD | - |
dc.subject.keywordAuthor | MOGA | - |
dc.subject.keywordAuthor | OAAO | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.