Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Contributors to Enhanced CO2 Electroreduction Activity and Stability in a Nanostructured Au Electrocatalyst

Authors
Kim, HaeriJeon, Hyo SangJee, Michael ShincheonNursanto, Eduardus BudiSingh, Jitendra PalChae, KeunhwaHwang, Yun JeongMin, Byoung Koun
Issue Date
23-8월-2016
Publisher
WILEY-V C H VERLAG GMBH
Keywords
Au; carbon dioxide; electrocatalyst; electroreduction; X-ray photoelectron spectroscopy
Citation
CHEMSUSCHEM, v.9, no.16, pp.2097 - 2102
Indexed
SCIE
SCOPUS
Journal Title
CHEMSUSCHEM
Volume
9
Number
16
Start Page
2097
End Page
2102
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/87792
DOI
10.1002/cssc.201600228
ISSN
1864-5631
Abstract
The formation of a nanostructure is a popular strategy for catalyst applications because it can generate new surfaces that can significantly improve the catalytic activity and durability of the catalysts. However, the increase in the surface area resulting from nanostructuring does not fully explain the substantial improvement in the catalytic properties of the CO2 electroreduction reaction, and the underlying mechanisms have not yet been fully understood. Here, based on a combination of extended X-ray absorption fine structure analysis, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy, we observed a contracted Au-Au bond length and low work function with the nanostructured Au surface that had enhanced catalytic activity for electrochemical CO2 reduction. The results may improve the understanding of the enhanced stability of the nanostructured Au electrode based on the resistance of cation adhesion during the CO2 reduction reaction.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE