Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Computational Vibrational Spectroscopy of HDO in Osmolyte-Water Solutions

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Hochan-
dc.contributor.authorChoi, Jun-Ho-
dc.contributor.authorVerma, Pramod Kumar-
dc.contributor.authorCho, Minhaeng-
dc.date.accessioned2021-09-03T21:50:26Z-
dc.date.available2021-09-03T21:50:26Z-
dc.date.created2021-06-18-
dc.date.issued2016-07-28-
dc.identifier.issn1089-5639-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/88033-
dc.description.abstractThe IR absorption and time-resolved IR spectroscopy of the OD stretch mode of HDO in water was successfully used to study osmolyte effects on water H-bonding network. Protecting osmolytes such as sorbitol and trimethylglycine (TMG) make the vibrational OD stretch band red-shifted, whereas urea affects the OD band marginally. Furthermore, we recently showed that, even though sorbitol and TMG cause a slow-down of HDO rotation in their aqueous solutions, urea does not induce any change in the rotational relaxation of HDO in aqueous urea solutions even at high concentrations. To clarify the underlying osmolyte effects on water H-bonding structure and dynamics, we performed molecular dynamics (MD) simulations of a variety of aqueous osmolyte solutions. Using the vibrational solvatochromism model for the OD stretch mode and taking into account the vibrational non-Condon and polarization effects on the OD transition dipole moment, we then calculated the IR absorption spectra and rotational anisotropy decay of the OD stretch mode of HDO for the sake of direct comparisons with our experimental results. The simulation results on the OD stretch IR absorption spectra and the rotational relaxation rate of HDO in osmolyte solutions are found to be in quantitative agreement with experimental data, which confirms the validity of the MD simulation and vibrational solvatochromism approaches. As a result, it becomes clear that the protecting osmolytes like sorbitol and TMG significantly modulate water H-bonding network structure, while urea perturbs water structure little. We anticipate that the computational approach discussed here will serve as an interpretive method with atomic-level chemical accuracy of current linear and nonlinear time-resolved IR spectroscopy of structure and dynamics of water near the surfaces of membranes and proteins under crowded environments.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectULTRAFAST INFRARED-SPECTROSCOPY-
dc.subjectHYDROGEN-BOND STRUCTURE-
dc.subjectAQUEOUS UREA SOLUTIONS-
dc.subjectMOLECULAR-DYNAMICS-
dc.subjectLIQUID WATER-
dc.subjectDILUTE HOD-
dc.subjectSPECTRAL DIFFUSION-
dc.subjectION AGGREGATION-
dc.subjectLINE-SHAPES-
dc.subjectENERGY-
dc.titleComputational Vibrational Spectroscopy of HDO in Osmolyte-Water Solutions-
dc.typeArticle-
dc.contributor.affiliatedAuthorCho, Minhaeng-
dc.identifier.doi10.1021/acs.jpca.6b06305-
dc.identifier.scopusid2-s2.0-84980049431-
dc.identifier.wosid000380730400011-
dc.identifier.bibliographicCitationJOURNAL OF PHYSICAL CHEMISTRY A, v.120, no.29, pp.5874 - 5886-
dc.relation.isPartOfJOURNAL OF PHYSICAL CHEMISTRY A-
dc.citation.titleJOURNAL OF PHYSICAL CHEMISTRY A-
dc.citation.volume120-
dc.citation.number29-
dc.citation.startPage5874-
dc.citation.endPage5886-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusULTRAFAST INFRARED-SPECTROSCOPY-
dc.subject.keywordPlusHYDROGEN-BOND STRUCTURE-
dc.subject.keywordPlusAQUEOUS UREA SOLUTIONS-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusLIQUID WATER-
dc.subject.keywordPlusDILUTE HOD-
dc.subject.keywordPlusSPECTRAL DIFFUSION-
dc.subject.keywordPlusION AGGREGATION-
dc.subject.keywordPlusLINE-SHAPES-
dc.subject.keywordPlusENERGY-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Min haeng photo

Cho, Min haeng
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE