Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Sodium chloride's effect on self-assembly of diphenylalanine bilayer

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Junpyo-
dc.contributor.authorLee, Myeongsang-
dc.contributor.authorNa, Sungsoo-
dc.date.accessioned2021-09-03T21:54:28Z-
dc.date.available2021-09-03T21:54:28Z-
dc.date.created2021-06-18-
dc.date.issued2016-07-15-
dc.identifier.issn0192-8651-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/88052-
dc.description.abstractUnderstanding self-assembling peptides becomes essential in nanotechnology, thereby providing a bottom-up method for fabrication of nanostructures. Diphenylalanine constitutes an outstanding building block that can be assembled into various nanostructures, including two-dimensional bilayers or nanotubes, exhibiting superb mechanical properties. It is known that the effect of the ions is critical in conformational and chemical interactions of bilayers or membranes. In this study, we analyzed the effect of sodium chloride on diphenylalanine bilayer using coarse-grained molecular dynamics simulations, and calculated the bending Young's modulus and the torsional modulus by applying normal modal analysis using an elastic network model. The results showed that sodium chloride dramatically increases the assembling efficiency and stability, thereby promising to allow the precise design and control of the fabrication process and properties of bio-inspired materials. (c) 2016 Wiley Periodicals, Inc.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-BLACKWELL-
dc.subjectCOARSE-GRAINED MODEL-
dc.subjectMARTINI FORCE-FIELD-
dc.subjectTECHNOLOGICAL APPLICATIONS-
dc.subjectBUILDING-BLOCKS-
dc.subjectPEPTIDE NANOSTRUCTURES-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectPHYSICAL-PROPERTIES-
dc.subjectMOLECULAR-DYNAMICS-
dc.subjectAMYLOID FIBERS-
dc.subjectNANOTUBES-
dc.titleSodium chloride's effect on self-assembly of diphenylalanine bilayer-
dc.typeArticle-
dc.contributor.affiliatedAuthorNa, Sungsoo-
dc.identifier.doi10.1002/jcc.24404-
dc.identifier.scopusid2-s2.0-84975109776-
dc.identifier.wosid000379161900009-
dc.identifier.bibliographicCitationJOURNAL OF COMPUTATIONAL CHEMISTRY, v.37, no.19, pp.1839 - 1846-
dc.relation.isPartOfJOURNAL OF COMPUTATIONAL CHEMISTRY-
dc.citation.titleJOURNAL OF COMPUTATIONAL CHEMISTRY-
dc.citation.volume37-
dc.citation.number19-
dc.citation.startPage1839-
dc.citation.endPage1846-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusCOARSE-GRAINED MODEL-
dc.subject.keywordPlusMARTINI FORCE-FIELD-
dc.subject.keywordPlusTECHNOLOGICAL APPLICATIONS-
dc.subject.keywordPlusBUILDING-BLOCKS-
dc.subject.keywordPlusPEPTIDE NANOSTRUCTURES-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusPHYSICAL-PROPERTIES-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusAMYLOID FIBERS-
dc.subject.keywordPlusNANOTUBES-
dc.subject.keywordAuthorself-assembly-
dc.subject.keywordAuthordiphenylalanine-
dc.subject.keywordAuthorsodium chloride-
dc.subject.keywordAuthormolecular dynamics-
dc.subject.keywordAuthorMARTINI-
dc.subject.keywordAuthornormal modal analysis-
dc.subject.keywordAuthorcoarse-grained method-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Mechanical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher NA, Sung Soo photo

NA, Sung Soo
공과대학 (기계공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE