Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Embarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning

Full metadata record
DC Field Value Language
dc.contributor.authorWu, Haiyong-
dc.contributor.authorChen, Geng-
dc.contributor.authorJin, Yan-
dc.contributor.authorShen, Dinggang-
dc.contributor.authorYap, Pew-Thian-
dc.date.accessioned2021-09-03T21:56:46Z-
dc.date.available2021-09-03T21:56:46Z-
dc.date.created2021-06-18-
dc.date.issued2016-07-13-
dc.identifier.issn1662-5196-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/88067-
dc.description.abstractGlobal tractography estimates brain connectivity by organizing signal-generating fiber segments in an optimal configuration that best describes the measured diffusion weighted data, promising better stability than local greedy methods with respect to imaging noise. However, global tractography is computationally very demanding and requires computation times that are often prohibitive for clinical applications. We present here a reformulation of the global tractography algorithm for fast parallel implementation amendable to acceleration using multi-core CPUs and general-purpose GPUs. Our method is motivated by the key observation that each fiber segment is affected by a limited spatial neighborhood. In other words, a fiber segment is influenced only by the fiber segments that are (or can potentially be) connected to its two ends and also by the diffusion-weighted signal in its proximity. This observation makes it possible to parallelize the Markov chain Monte Carlo (MCMC) algorithm used in the global tractography algorithm so that concurrent updating of independent fiber segments can be carried out. Experiments show that the proposed algorithm can significantly speed up global tractography, while at the same time maintain or even improve tractography performance.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherFRONTIERS MEDIA SA-
dc.subjectCOMPONENT ANALYSIS-
dc.subjectBRAIN-
dc.subjectMRI-
dc.subjectTRACKING-
dc.subjectRECONSTRUCTION-
dc.subjectIDENTIFICATION-
dc.subjectPATHWAYS-
dc.subjectCALLOSAL-
dc.subjectAUTISM-
dc.titleEmbarrassingly Parallel Acceleration of Global Tractography via Dynamic Domain Partitioning-
dc.typeArticle-
dc.contributor.affiliatedAuthorShen, Dinggang-
dc.identifier.doi10.3389/fninf.2016.00025-
dc.identifier.scopusid2-s2.0-84989874238-
dc.identifier.wosid000379645300001-
dc.identifier.bibliographicCitationFRONTIERS IN NEUROINFORMATICS, v.10-
dc.relation.isPartOfFRONTIERS IN NEUROINFORMATICS-
dc.citation.titleFRONTIERS IN NEUROINFORMATICS-
dc.citation.volume10-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.subject.keywordPlusCOMPONENT ANALYSIS-
dc.subject.keywordPlusBRAIN-
dc.subject.keywordPlusMRI-
dc.subject.keywordPlusTRACKING-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusPATHWAYS-
dc.subject.keywordPlusCALLOSAL-
dc.subject.keywordPlusAUTISM-
dc.subject.keywordAuthordiffusion magnetic resonance imaging-
dc.subject.keywordAuthorglobal tractography-
dc.subject.keywordAuthorMarkov chain Monte Carlo-
dc.subject.keywordAuthorbrain connectivity-
dc.subject.keywordAuthorparallel computing-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE