Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrochemical properties of CuO hollow nanopowders prepared from formless Cu-C composite via nanoscale Kirkendall diffusion process

Full metadata record
DC Field Value Language
dc.contributor.authorWon, Jong Min-
dc.contributor.authorKim, Jong Hwa-
dc.contributor.authorChoi, Yun Ju-
dc.contributor.authorCho, Jung Sang-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-03T22:41:26Z-
dc.date.available2021-09-03T22:41:26Z-
dc.date.created2021-06-18-
dc.date.issued2016-06-25-
dc.identifier.issn0925-8388-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/88303-
dc.description.abstractHollow CuO nanopowders are prepared using a simple spray drying process that relied on nanoscale Kirkendall diffusion; these nanopowders have potential applications in lithium-ion batteries. Citric acid is used as both the carbon source material and chelating agent and plays a key role in the preparation of the hollow nanopowders. The formless Cu-C composite that formed as an intermediate product transforms into slightly aggregated CuO hollow nanopowders after post-treatment at 300 and 400 degrees C under an air atmosphere. The CuO hollow nanopowders exhibit higher initial discharge capacities and better cycling performances than those of the filled-structured CuO nanopowders, which are prepared at a post-treatment temperature of 500 degrees C under an air atmosphere. The discharge capacities of the CuO nanopowders post-treated at 300, 400, and 500 degrees C for the 150th cycle at a current density of 1 A g(-1) are 793, 632, and 464 mA h g (1), respectively, and their capacity retentions calculated from the maximum discharge capacities are 88, 80, and 73%, respectively. The CuO nanopowders with hollow structures exhibit better structural stability for repeated lithium insertion and desertion processes than those with filled structures. (C) 2016 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectHIGH-PERFORMANCE ANODE-
dc.subjectION BATTERY ANODES-
dc.subjectFACILE SYNTHESIS-
dc.subjectHIGH-CAPACITY-
dc.subjectMETAL-OXIDE-
dc.subjectSTORAGE PROPERTIES-
dc.subjectSTRUCTURED LI3VO4-
dc.subjectLARGE-SCALE-
dc.subjectLITHIUM-
dc.subjectGRAPHENE-
dc.titleElectrochemical properties of CuO hollow nanopowders prepared from formless Cu-C composite via nanoscale Kirkendall diffusion process-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1016/j.jallcom.2016.01.252-
dc.identifier.scopusid2-s2.0-84959018497-
dc.identifier.wosid000371767900010-
dc.identifier.bibliographicCitationJOURNAL OF ALLOYS AND COMPOUNDS, v.671, pp.74 - 83-
dc.relation.isPartOfJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.titleJOURNAL OF ALLOYS AND COMPOUNDS-
dc.citation.volume671-
dc.citation.startPage74-
dc.citation.endPage83-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusION BATTERY ANODES-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusMETAL-OXIDE-
dc.subject.keywordPlusSTORAGE PROPERTIES-
dc.subject.keywordPlusSTRUCTURED LI3VO4-
dc.subject.keywordPlusLARGE-SCALE-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordAuthorKirkendall diffusion-
dc.subject.keywordAuthorCopper oxide-
dc.subject.keywordAuthorAnode material-
dc.subject.keywordAuthorLithium-ion battery-
dc.subject.keywordAuthorSpray drying-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE