Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Tae-goo-
dc.contributor.authorYang, Taeseok Daniel-
dc.contributor.authorLee, Kyoung J.-
dc.date.accessioned2021-09-04T00:24:03Z-
dc.date.available2021-09-04T00:24:03Z-
dc.date.created2021-06-18-
dc.date.issued2016-04-29-
dc.identifier.issn1932-6203-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/88885-
dc.description.abstractThe crawling of biological cell is a complex phenomenon involving various biochemical and mechanical processes. Some of these processes are intrinsic to individual cells, while others pertain to cell-to-cell interactions and to their responses to extrinsically imposed cues. Here, we report an interesting aggregation dynamics of mathematical model cells, when they perform chemotaxis in response to an externally imposed global chemical gradient while they influence each other through a haptotaxis-mediated social interaction, which confers intriguing trail patterns. In the absence of the cell-to-cell interaction, the equilibrium population density profile fits well to that of a simple Keller-Segal population dynamic model, in which a chemotactic current density (J) over right arrow (chemo) similar to del p competes with a normal diffusive current density (J) over right arrow (diff) similar to del rho, where rho and. refer to the concentration of chemoattractant and population density, respectively. We find that the cell-to-cell interaction confers a far more compact aggregation resulting in a much higher peak equilibrium cell density. The mathematical model system is applicable to many biological systems such as swarming microglia and neutrophils or accumulating ants towards a localized food source.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPUBLIC LIBRARY SCIENCE-
dc.subjectMIGRATION-
dc.subjectMICROGLIA-
dc.subjectMOVEMENT-
dc.subjectFORCES-
dc.subjectWAVES-
dc.subjectMODEL-
dc.subjectATP-
dc.subjectADP-
dc.titleEnhancement of Chemotactic Cell Aggregation by Haptotactic Cell-To-Cell Interaction-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Kyoung J.-
dc.identifier.doi10.1371/journal.pone.0154717-
dc.identifier.scopusid2-s2.0-84966277085-
dc.identifier.wosid000375212600062-
dc.identifier.bibliographicCitationPLOS ONE, v.11, no.4-
dc.relation.isPartOfPLOS ONE-
dc.citation.titlePLOS ONE-
dc.citation.volume11-
dc.citation.number4-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusMIGRATION-
dc.subject.keywordPlusMICROGLIA-
dc.subject.keywordPlusMOVEMENT-
dc.subject.keywordPlusFORCES-
dc.subject.keywordPlusWAVES-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusATP-
dc.subject.keywordPlusADP-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, Kyoung Jin photo

LEE, Kyoung Jin
이과대학 (물리학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE