Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Metal-Insulator-Semiconductor Coaxial Microfibers Based on Self-Organization of Organic Semiconductor: Polymer Blend for Weavable, Fibriform Organic Field-Effect Transistors

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Hae Min-
dc.contributor.authorKang, Hyun Wook-
dc.contributor.authorHwang, Do Kyung-
dc.contributor.authorLim, Ho Sun-
dc.contributor.authorJu, Byeong-Kwon-
dc.contributor.authorLim, Jung Ah-
dc.date.accessioned2021-09-04T00:25:31Z-
dc.date.available2021-09-04T00:25:31Z-
dc.date.created2021-06-17-
dc.date.issued2016-04-25-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/88894-
dc.description.abstractWith the increasing importance of electronic textiles as an ideal platform for wearable electronic devices, requirements for the development of functional electronic fibers with multilayered structures are increasing. In this paper, metal-polymer insulator-organic semiconductor (MIS) coaxial microfibers using the self-organization of organic semiconductor: insulating polymer blends for weavable, fibriform organic field-effect transistors (FETs) are demonstrated. A holistic process for MIS coaxial microfiber fabrication, including surface modification of gold microfiber thin-film coating on the microfiber using a die-coating system, and the self-organization of organic semiconductor-insulator polymer blend is presented. Vertical phase-separation of the organic semiconductor: insulating polymer blend film wrapping the metal microfibers provides a coaxial bilayer structure of gate dielectric (inside) and organic semiconductor (outside) with intimate interfacial contact. It is determined that the fibriform FETs based on MIS coaxial microfiber exhibit good charge carrier mobilities that approach the values of typical devices with planar substrate. It additionally exhibits electrical property uniformity over the entire fiber surface and improved bending durability. Fibriform organic FET embedded in a textile is demonstrated by weaving MIS coaxial microfibers with cotton and conducting threads, which verifies the feasibility of MIS coaxial microfiber for use in electronic textile applications.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectVERTICAL-PHASE-SEPARATION-
dc.subjectSOLAR-CELLS-
dc.subjectWEARABLE ELECTRONICS-
dc.subjectPRESSURE SENSOR-
dc.subjectE-TEXTILES-
dc.subjectFIBER-
dc.subjectFABRICATION-
dc.subjectGRAPHENE-
dc.subjectFACILE-
dc.subjectENERGY-
dc.titleMetal-Insulator-Semiconductor Coaxial Microfibers Based on Self-Organization of Organic Semiconductor: Polymer Blend for Weavable, Fibriform Organic Field-Effect Transistors-
dc.typeArticle-
dc.contributor.affiliatedAuthorJu, Byeong-Kwon-
dc.identifier.doi10.1002/adfm.201504972-
dc.identifier.scopusid2-s2.0-84975755437-
dc.identifier.wosid000375125300012-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.26, no.16, pp.2706 - 2714-
dc.relation.isPartOfADVANCED FUNCTIONAL MATERIALS-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume26-
dc.citation.number16-
dc.citation.startPage2706-
dc.citation.endPage2714-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusVERTICAL-PHASE-SEPARATION-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusWEARABLE ELECTRONICS-
dc.subject.keywordPlusPRESSURE SENSOR-
dc.subject.keywordPlusE-TEXTILES-
dc.subject.keywordPlusFIBER-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusFACILE-
dc.subject.keywordPlusENERGY-
dc.subject.keywordAuthorelectronic fibers-
dc.subject.keywordAuthorfluid coating on fiber-
dc.subject.keywordAuthororganic field-effect transistor-
dc.subject.keywordAuthorphase-separation-
dc.subject.keywordAuthorpolymer blend-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ju, Byeong kwon photo

Ju, Byeong kwon
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE