Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Contribution of Drosophila TRPA1 to Metabolism

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jung-Eun-
dc.contributor.authorKim, Yunjung-
dc.contributor.authorKim, Kyoung Heon-
dc.contributor.authorLee, Do Yup-
dc.contributor.authorLee, Youngseok-
dc.date.accessioned2021-09-04T00:46:56Z-
dc.date.available2021-09-04T00:46:56Z-
dc.date.created2021-06-17-
dc.date.issued2016-04-07-
dc.identifier.issn1932-6203-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/88933-
dc.description.abstractTransient receptor potential (TRP) cation channels are highly conserved in humans and insects. Some of these channels are expressed in internal organs and their functions remain incompletely understood. By direct knock-in of the GAL4 gene into the trpA1 locus in Drosophila, we identified the expression of this gene in the subesophageal ganglion (SOGs) region. In addition, the neurites present in the dorsal posterior region as well as the drosophila insulin-like peptide 2 (dILP2)-positive neurons send signals to the SOGs. The signal is sent to the crop, which is an enlarged organ of the esophagus and functions as a storage place for food in the digestive system. To systematically investigate the role of TRPA1 in metabolism, we applied non-targeted metabolite profiling analysis together with gas-chromatography/ time-of-flight mass spectrometry, with an aim to identify a wide range of primary metabolites. We effectively captured distinctive metabolomic phenotypes and identified specific metabolic dysregulation triggered by TRPA1 mutation based on reconstructed metabolic network analysis. Primarily, the network analysis pinpointed the simultaneous down-regulation of intermediates in the methionine salvation pathway, in contrast to the synchronized up-regulation of a range of free fatty acids. The gene dosage-dependent dynamics of metabolite levels among wild-type, hetero-and homozygous mutants, and their coordinated metabolic modulation under multiple gene settings across five different genotypes confirmed the direct linkages of TRPA1 to metabolism.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPUBLIC LIBRARY SCIENCE-
dc.subjectEXTENDS LIFE-SPAN-
dc.subjectCLUSTER-ANALYSIS-
dc.subjectFATTY-ACIDS-
dc.subjectMETHIONINE-
dc.subjectMELANOGASTER-
dc.subjectRESTRICTION-
dc.subjectHEAT-
dc.subjectSUPPLEMENTATION-
dc.subjectTOLERANCE-
dc.subjectINCREASES-
dc.titleContribution of Drosophila TRPA1 to Metabolism-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Kyoung Heon-
dc.identifier.doi10.1371/journal.pone.0152935-
dc.identifier.scopusid2-s2.0-84963579548-
dc.identifier.wosid000373608000056-
dc.identifier.bibliographicCitationPLOS ONE, v.11, no.4-
dc.relation.isPartOfPLOS ONE-
dc.citation.titlePLOS ONE-
dc.citation.volume11-
dc.citation.number4-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusEXTENDS LIFE-SPAN-
dc.subject.keywordPlusCLUSTER-ANALYSIS-
dc.subject.keywordPlusFATTY-ACIDS-
dc.subject.keywordPlusMETHIONINE-
dc.subject.keywordPlusMELANOGASTER-
dc.subject.keywordPlusRESTRICTION-
dc.subject.keywordPlusHEAT-
dc.subject.keywordPlusSUPPLEMENTATION-
dc.subject.keywordPlusTOLERANCE-
dc.subject.keywordPlusINCREASES-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Kyoung Heon photo

Kim, Kyoung Heon
융합생명공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE