Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Jung Sang-
dc.contributor.authorLee, Seung Yeon-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-04T01:29:54Z-
dc.date.available2021-09-04T01:29:54Z-
dc.date.created2021-06-17-
dc.date.issued2016-03-21-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/89193-
dc.description.abstractThe first-ever study of nickel selenide materials as efficient anode materials for Na-ion rechargeable batteries is conducted using the electrospinning process. NiSe2-reduced graphene oxide (rGO)-C composite nanofibers are successfully prepared via electrospinning and a subsequent selenization process. The electrospun nanofibers giving rise to these porous-structured composite nanofibers with optimum amount of amorphous C are obtained from the polystyrene to polyacrylonitrile ratio of 1/4. These composite nanofibers also consist of uniformly distributed single-crystalline NiSe2 nanocrystals that have a mean size of 27 nm. In contrast, the densely structured bare NiSe2 nanofibers formed via selenization of the pure NiO nanofibers consist of large crystallites. The initial discharge capacities of the NiSe2-rGO-C composite and bare NiSe2 nanofibers at a current density of 200 mA g(-1) are 717 and 755 mA h g(-1), respectively. However, the respective 100th-cycle discharge capacities of the former and latter are 468 and 35 mA h g(-1). Electrochemical impedance spectroscopy measurements reveal the structural stability of the composite nanofibers during repeated Na-ion insertion and extraction processes. The excellent Na-ion storage properties of these nanofibers are attributed to this structural stability.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectSUPERIOR ELECTROCHEMICAL PROPERTIES-
dc.subjectCATHODE MATERIALS-
dc.subjectHOLLOW MICROSPHERES-
dc.subjectLITHIUM-
dc.subjectPERFORMANCE-
dc.subjectOXIDE-
dc.subjectTRANSITION-
dc.subjectELECTRODES-
dc.subjectDIFFUSION-
dc.subjectDESIGN-
dc.titleFirst Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1038/srep23338-
dc.identifier.scopusid2-s2.0-84961844622-
dc.identifier.wosid000372473300001-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.6-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume6-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusSUPERIOR ELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusHOLLOW MICROSPHERES-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusDIFFUSION-
dc.subject.keywordPlusDESIGN-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE