Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Atypical sensors for direct and rapid neuronal detection of bacterial pathogens

Authors
Lim, Ji YeonChoi, Seung-InChoi, GeunyeolHwang, Sun Wook
Issue Date
9-3월-2016
Publisher
BIOMED CENTRAL LTD
Keywords
Pathogen; Bacteria; Sensory neuron; Pattern recognition receptors; TRPA1; ADAM10; FPR; Pain; Inflammation
Citation
MOLECULAR BRAIN, v.9
Indexed
SCIE
SCOPUS
Journal Title
MOLECULAR BRAIN
Volume
9
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/89226
DOI
10.1186/s13041-016-0202-x
ISSN
1756-6606
Abstract
Bacterial infection can threaten the normal biological functions of a host, often leading to a disease. Hosts have developed complex immune systems to cope with the danger. Preceding the elimination of pathogens, selective recognition of the non-self invaders is necessary. At the forefront of the body's defenses are the innate immune cells, which are equipped with particular sensor molecules that can detect common exterior patterns of invading pathogens and their secreting toxins as well as with phagocytic machinery. Inflammatory mediators and cytokines released from these innate immune cells and infected tissues can boost the inflammatory cascade and further recruit adaptive immune cells to maximize the elimination and resolution. The nervous system also seems to interact with this process, mostly known to be affected by the inflammatory mediators through the binding of neuronal receptors, consequently activating neural circuits that tune the local and systemic inflammatory states. Recent research has suggested new contact points: direct interactions of sensory neurons with pathogens. Latest findings demonstrated that the sensory neurons not only share pattern recognition mechanisms with innate immune cells, but also utilize endogenous and exogenous electrogenic components for bacterial pathogen detection, by which the electrical firing prompts faster information flow than what could be achieved when the immune system is solely involved. As a result, rapid pain generation and active accommodation of the immune status occur. Here we introduced the sensory neuron-specific detector molecules for directly responding to bacterial pathogens and their signaling mechanisms. We also discussed extended issues that need to be explored in the future.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biomedical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Hwang, Sun Wook photo

Hwang, Sun Wook
의과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE