Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion

Full metadata record
DC Field Value Language
dc.contributor.authorCho, Jung Sang-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-04T02:46:31Z-
dc.date.available2021-09-04T02:46:31Z-
dc.date.created2021-06-16-
dc.date.issued2016-02-17-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/89503-
dc.description.abstractA simple and easily scalable process for the formation of metal oxide hollow nanospheres using nanoscale Kirkendall diffusion called the "all-in-one beaker method" is introduced. The Fe2O3, SnO2, NiO, and Co3O4 hollow nanospheres are successfully prepared by the all-in-one beaker method. The detailed formation mechanism of aggregate-free hematite hollow nanospheres is studied. Dimethylformamide solution containing Fe acetate, polyacrylonitrile (PAN), and polystyrene (PS) transforms into aggregate-free Fe2O3 hollow nanospheres. The porous structure formed by the combustion of PS provides a good pathway for the reducing gas. The carbon matrix formed from PAN acts as a barrier, which can prevent the aggregation of metallic Fe nanopowders by surrounding each particle. The Fe-C bulk material formed as an intermediate product transforms into aggregate-free Fe2O3 hollow nanospheres by the nanoscale Kirkendall diffusion process. The mean size and shell thickness of the hollow Fe2O3 nanospheres measured from the TEM images are 52 and 9 nm, respectively. The discharge capacities of the Fe2O3 nanopowders with hollow and dense structures and the bulk material for the 200th cycle at a current density of 0.5 A g(-1) are 1012, 498, and 637 mA h g(-1), respectively, and their capacity retentions calculated compared to those in the second cycles are 92, 45, and 59%, respectively. Additionally, Fe2O3 hollow nanospheres cycled at 1 A g(-1) after 1000 cycles showed a high discharge capacity of 871 mA h g(-1) (capacity retention was 80% from the second cycle). The Fe2O3, SnO2, NiO, and Co3O4 hollow nanospheres show excellent cycling performances for lithium-ion storage because they have a high contact area with the liquid electrolyte and space for accommodating a huge volume change during cycling.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectONE-POT SYNTHESIS-
dc.subjectANODE MATERIAL-
dc.subjectLITHIUM-
dc.subjectGRAPHENE-
dc.subjectPERFORMANCE-
dc.subjectCOMPOSITES-
dc.subjectFACILE-
dc.subjectNANOWIRES-
dc.subjectTEMPLATE-
dc.subjectSPHERES-
dc.titleAll-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1021/acsami.5b10278-
dc.identifier.scopusid2-s2.0-84959020427-
dc.identifier.wosid000370583100031-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.8, no.6, pp.3800 - 3809-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume8-
dc.citation.number6-
dc.citation.startPage3800-
dc.citation.endPage3809-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusONE-POT SYNTHESIS-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusFACILE-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusTEMPLATE-
dc.subject.keywordPlusSPHERES-
dc.subject.keywordAuthorKirkendall diffusion-
dc.subject.keywordAuthorhollow nanosphere-
dc.subject.keywordAuthoriron oxide-
dc.subject.keywordAuthoranode material-
dc.subject.keywordAuthorlithium-ion battery-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE