Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium D-pantothenate

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Il Woo-
dc.contributor.authorLi, Jinglei-
dc.contributor.authorChen, Xiguang-
dc.contributor.authorPark, Hyun Jin-
dc.date.accessioned2021-09-04T03:44:44Z-
dc.date.available2021-09-04T03:44:44Z-
dc.date.created2021-06-18-
dc.date.issued2016-01-20-
dc.identifier.issn0021-8995-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/89780-
dc.description.abstractPoly(vinyl alcohol) (PVA) nanofibers containing halloysite nanotubes (HNTs) loaded with sodium D-pantothenate (SDP) were successfully fabricated via simple blend-electrospinning. SDP was efficiently loaded into the innate HNT lumen with an SDP/HNT mass ratio of 1.5:1 via vacuum treatment. The SDP-loaded HNT-inclusion complex was evaluated with drug-loading efficiency testing, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction. The morphologies of the nanofibers were observed by scanning electron microscopy, which revealed uniform and smooth surfaces of the nanofibers. The addition of HNTs to the composite nanofibers increased the viscosity of the polymer solution, and this suggested shorter fiber diameters. FTIR spectroscopy verified the good compatibility of the SDP and HNTs with PVA. Moreover, the swelling properties were found to quantitatively correlate with weight loss. In vitro drug-release testing revealed that the HNTs and crosslinking reaction most dramatically affected the sustained release of SDP from the PVA and SDP-loaded HNT complex. In the drug-release kinetics model, SDP release depended on the diffusion caused by the deformation of the polymer-based structures in the medium; it followed Fickian diffusion with acceptable coefficient of determination (r(2)) values between 0.88 and 0.94. Most importantly, the HNTs as natural biocontainers effectively modulated the release profile by loading the active compound in harmony with the electrospun nanofibers. (C) 2015 Wiley Periodicals, Inc.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectDRUG-DELIVERY SYSTEM-
dc.subjectIN-VITRO-
dc.subjectPOLYVINYL-ALCOHOL-
dc.subjectPOLYMERIC NANOFIBERS-
dc.subjectPROTECTIVE AGENTS-
dc.subjectCLAY NANOTUBES-
dc.subjectFIBERS-
dc.subjectIMMOBILIZATION-
dc.subjectFILMS-
dc.subjectMATS-
dc.titleElectrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium D-pantothenate-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Hyun Jin-
dc.identifier.doi10.1002/app.42900-
dc.identifier.scopusid2-s2.0-84984972643-
dc.identifier.wosid000363678200003-
dc.identifier.bibliographicCitationJOURNAL OF APPLIED POLYMER SCIENCE, v.133, no.4-
dc.relation.isPartOfJOURNAL OF APPLIED POLYMER SCIENCE-
dc.citation.titleJOURNAL OF APPLIED POLYMER SCIENCE-
dc.citation.volume133-
dc.citation.number4-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPolymer Science-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.subject.keywordPlusDRUG-DELIVERY SYSTEM-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusPOLYVINYL-ALCOHOL-
dc.subject.keywordPlusPOLYMERIC NANOFIBERS-
dc.subject.keywordPlusPROTECTIVE AGENTS-
dc.subject.keywordPlusCLAY NANOTUBES-
dc.subject.keywordPlusFIBERS-
dc.subject.keywordPlusIMMOBILIZATION-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusMATS-
dc.subject.keywordAuthordrug-delivery systems-
dc.subject.keywordAuthorelectrospinning-
dc.subject.keywordAuthorhydrophilic polymers-
dc.subject.keywordAuthornanostructured polymers-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher PARK, HYUN JIN photo

PARK, HYUN JIN
College of Life Sciences and Biotechnology (Division of Food Bioscience and Technology)
Read more

Altmetrics

Total Views & Downloads

BROWSE