Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Ultrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Yeon Hoo-
dc.contributor.authorKim, Kye Yeop-
dc.contributor.authorChoi, You Rim-
dc.contributor.authorShim, Young-Seok-
dc.contributor.authorJeon, Jong-Myeong-
dc.contributor.authorLee, Jong-Heun-
dc.contributor.authorKim, Soo Young-
dc.contributor.authorHan, Seungwu-
dc.contributor.authorJang, Ho Won-
dc.date.accessioned2021-09-04T05:43:36Z-
dc.date.available2021-09-04T05:43:36Z-
dc.date.created2021-06-18-
dc.date.issued2016-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/90416-
dc.description.abstractTwo-dimensional (2D) molybdenum disulfide (MoS2) has been attracting rapidly increasing interest for application in chemoresistive gas sensors owing to its moderate band gap energy and high specific surface area. However, the mechanism of chemoresistive sensing via the adsorption and desorption of gas molecules and the influence of the shape of 2D materials are not well understood yet. Herein we investigate the oxygen sensing behavior of MoS2 microflakes and nanoparticles prepared by mechanical and liquid exfoliation, respectively. Liquid-exfoliated MoS2 nanoparticles with an increased number of edge sites present high and linear responses to a broad range of oxygen concentrations (1-100%). The energetically favorable oxygen adsorption sites, which are responsible for reversible oxygen sensing, are identified by first-principles calculations based on density functional theory. This study serves as a proof-of-concept for the gas sensing mechanism depending on the surface configuration of 2D materials and broadens the potential of 2D MoS2 in gas sensing applications.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectGAS-
dc.subjectFABRICATION-
dc.subjectSENSORS-
dc.subjectSINGLE-
dc.titleUltrasensitive reversible oxygen sensing by using liquid-exfoliated MoS2 nanoparticles-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Jong-Heun-
dc.identifier.doi10.1039/c6ta01277a-
dc.identifier.scopusid2-s2.0-84967142364-
dc.identifier.wosid000374790700039-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.4, no.16, pp.6070 - 6076-
dc.relation.isPartOfJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume4-
dc.citation.number16-
dc.citation.startPage6070-
dc.citation.endPage6076-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusSINGLE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE