Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Chalcogenization-Derived Band Gap Grading in Solution-Processed CuInxGa1-x(Se,S)(2) Thin-Film Solar Cells

Authors
Park, Se JinJeon, Hyo SangCho, Jin WooHwang, Yun JeongPark, Kyung SuShim, Hyeorg SeopSong, Jae KyuCho, YunaeKim, Dong-WookKim, JihyunMin, Byoung Koun
Issue Date
16-12월-2015
Publisher
AMER CHEMICAL SOC
Keywords
solar cells; CIGSSe; solution process; band gap grading chalcogenization
Citation
ACS APPLIED MATERIALS & INTERFACES, v.7, no.49, pp.27391 - 27396
Indexed
SCIE
SCOPUS
Journal Title
ACS APPLIED MATERIALS & INTERFACES
Volume
7
Number
49
Start Page
27391
End Page
27396
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/91561
DOI
10.1021/acsami.5b09054
ISSN
1944-8244
Abstract
Significant enhancement of solution-processed CuInxGa1-x(Se,S)(2) (CIGSSe) thin-film solar cell performance was achieved by inducing a band gap gradient in the film thickness, which was triggered by the chalcogenization process. Specifically, after the preparation of an amorphous mixed oxide film of Cu, In, and Ga by a simple paste coating method chalcogenization under Se vapor, along with the flow of dilute H2S gas, resulted in the formation of CIGSSe films with graded composition distribution: S-rich top, In- and Se-rich middle, and Ga- and S-rich bottom. This uneven compositional distribution was confirmed to lead to a band gap gradient in the film, which may also be responsible for enhancement in the open circuit voltage and reduction in photocurrent loss, thus increasing the overall efficiency. The highest power conversion efficiency of 11.7% was achieved with J(sc) of 28.3 mA/cm(2), V-oc of 601 mV, and FF of 68.6%.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE