Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhancement in performance of optoelectronic devices by optical-functional patterns

Authors
Kim, Yang-DooCho, Joong-YeonLee, Heon
Issue Date
11월-2015
Publisher
SPRINGER
Citation
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, v.121, no.2, pp.377 - 386
Indexed
SCIE
SCOPUS
Journal Title
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume
121
Number
2
Start Page
377
End Page
386
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/92039
DOI
10.1007/s00339-015-9193-1
ISSN
0947-8396
Abstract
In this study, nanoimprint lithography (NIL) and a direct printing technique were used to create optical-functional structures on the substrate of organic light emitting diodes (OLEDs) and alpha-Si solar cell devices in order to cause light scattering and enhance their efficiencies. NIL can fabricate nanoscale patterns with a simple process and relatively low costs. Apart from low cost, the NIL-based direct patterning process also has advantages such as high throughput and high resolution. In addition, it enables the fabrication of inorganic or organic-inorganic hybrid nano-patterns on various substrates and can therefore be applied to diverse electronic devices to enhance their performance. The performances of the optoelectronic devices were improved after the formation of the optical-functional structure. In case of a thin-film solar cell on patterned glass, its conversion efficiency was increased up to 39.1 %, while the conversion efficiency of a thin-film solar cell on a patterned metal layer was increased up to 12 %. In case of OLEDs, the current and power efficiencies of OLEDs on planarized patterns were enhanced by 32 and 49 %, respectively.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Heon photo

Lee, Heon
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE