Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Enhanced Selectivity to H-2 Formation in Decomposition of HCOOH on the Ag-19@Pd-60 Core-Shell Nanocluster from First-Principles

Authors
Cho, JinwonLee, SangheonHan, JongheeYoon, Sung PilNam, Suk WooChoi, Sun HeeHong, Seong-AhnLee, Kwan-YoungHam, Hyung Chul
Issue Date
10월-2015
Publisher
AMER SCIENTIFIC PUBLISHERS
Keywords
First-Principles; Ag-Pd Core-Shell; H-2 Formation; HCOOH; Selectivity
Citation
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.15, no.10, pp.8233 - 8237
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume
15
Number
10
Start Page
8233
End Page
8237
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/92292
DOI
10.1166/jnn.2015.11442
ISSN
1533-4880
Abstract
In this study, using spin-polarized density functional theory calculation we examined the origin of enhanced catalytic activity toward H-2 production from HCOOH in Ag-19@Pd-60 core shell nanoclusters (a 79-atom truncated octahedral cluster models). First, we find that the Pd monolayer shell on the Ag core can greatly enhance the selectivity to H-2 formation via HCOOH decomposition compared to the pure Pd-79 cluster by substantially reducing the binding energy of key intermediate HCOO and in turn the barrier for dehydrogenation. This activity enhancement is related to the modification of d states in the Pd monolayer shell by the strong ligand effect between Ag core and Pd shell, rather than the tensile strain effect by Ag core. In particular, the absence of dz(2)-r(2) density of states near the Fermi level in the Pd monolayer shell (which originated from the substantial charge transfer from Ag to Pd) is the main reason for the increased H-2 production from HCOOH decomposition.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > GREEN SCHOOL (Graduate School of Energy and Environment) > 1. Journal Articles
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Kwan Young photo

Lee, Kwan Young
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE