In-situ damage sensing of woven composites using carbon nanotube conductive networks
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Na, Won-Jin | - |
dc.contributor.author | Byun, Jun-Hyung | - |
dc.contributor.author | Lee, Myoung-Gyu | - |
dc.contributor.author | Yu, Woong-Ryeol | - |
dc.date.accessioned | 2021-09-04T12:11:06Z | - |
dc.date.available | 2021-09-04T12:11:06Z | - |
dc.date.created | 2021-06-10 | - |
dc.date.issued | 2015-10 | - |
dc.identifier.issn | 1359-835X | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/92402 | - |
dc.description.abstract | We report an in situ analysis of the microstructure of woven composites using carbon nanotube (CNT)-based conductive networks. Two types of specimens with stacking sequences of (0/90)(s) (on-axis) and (22/85/-85/-22) (off-axis) were manufactured using ultra-high-molecular-weight polyethylene fibers and a CNT-dispersed epoxy matrix via vacuum-assisted resin transfer molding. The changes in the electrical resistance of the woven composites in response to uniaxial loading corresponded to the changes in the gradient of the stress strain curves, which is indicative of the initiation and accumulation of microscopic cracking and delamination. The electrical resistance of the woven composites increased due to both elongation and microscopic damage; interestingly, however, it decreased beyond a certain strain level. In situ X-ray computed tomography and biaxial loading tests reveal that this transition is due to yarn compaction and Poisson's contraction, which are manifest in textile composites. (C) 2015 Elsevier Ltd. All rights reserved. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCI LTD | - |
dc.subject | BRAIDED COMPOSITES | - |
dc.subject | EPOXY COMPOSITES | - |
dc.subject | BEHAVIOR | - |
dc.subject | IMPACT | - |
dc.subject | NANOCOMPOSITES | - |
dc.subject | TOMOGRAPHY | - |
dc.subject | PREDICTION | - |
dc.subject | SPECIMEN | - |
dc.subject | TENSION | - |
dc.subject | STRAIN | - |
dc.title | In-situ damage sensing of woven composites using carbon nanotube conductive networks | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Lee, Myoung-Gyu | - |
dc.identifier.doi | 10.1016/j.compositesa.2015.07.017 | - |
dc.identifier.scopusid | 2-s2.0-84938283469 | - |
dc.identifier.wosid | 000360420300026 | - |
dc.identifier.bibliographicCitation | COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, v.77, pp.229 - 236 | - |
dc.relation.isPartOf | COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING | - |
dc.citation.title | COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING | - |
dc.citation.volume | 77 | - |
dc.citation.startPage | 229 | - |
dc.citation.endPage | 236 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Engineering, Manufacturing | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Composites | - |
dc.subject.keywordPlus | BRAIDED COMPOSITES | - |
dc.subject.keywordPlus | EPOXY COMPOSITES | - |
dc.subject.keywordPlus | BEHAVIOR | - |
dc.subject.keywordPlus | IMPACT | - |
dc.subject.keywordPlus | NANOCOMPOSITES | - |
dc.subject.keywordPlus | TOMOGRAPHY | - |
dc.subject.keywordPlus | PREDICTION | - |
dc.subject.keywordPlus | SPECIMEN | - |
dc.subject.keywordPlus | TENSION | - |
dc.subject.keywordPlus | STRAIN | - |
dc.subject.keywordAuthor | Fabrics/textiles | - |
dc.subject.keywordAuthor | Electrical properties | - |
dc.subject.keywordAuthor | Damage tolerance | - |
dc.subject.keywordAuthor | Non-destructive testing | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.