Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Stabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone

Full metadata record
DC Field Value Language
dc.contributor.authorKumar, Gudi Satheesh-
dc.contributor.authorWee, Youngho-
dc.contributor.authorLee, Inseon-
dc.contributor.authorSun, Ho Jin-
dc.contributor.authorZhao, Xueyan-
dc.contributor.authorXia, Shunxiang-
dc.contributor.authorKim, Seongbeen-
dc.contributor.authorLee, Jinwoo-
dc.contributor.authorWang, Ping-
dc.contributor.authorKim, Jungbae-
dc.date.accessioned2021-09-04T12:41:43Z-
dc.date.available2021-09-04T12:41:43Z-
dc.date.created2021-06-18-
dc.date.issued2015-09-15-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/92469-
dc.description.abstractThe biodiesel industry generates glycerol as a main by-product, and the conversion of glycerol to value-added products is an important issue. Glycerol dehydrogenase (GDH) can catalyze the conversion of glycerol to dihydroxyacetone (DHA), which is used as a tanning agent in cosmetics and is much more expensive than glycerol. In this study, GDH was adsorbed into magnetically-separable mesoporous silica with 38 nm mesocellular pores connected via 18 nm window rhesopores (adsorbed GDH, called ADS), and further crosslinked via a simple glutaraldehyde treatment to prepare nanoscale enzyme reactors of GDH (NERs of GDH, called NER). When the stabilities of free and immobilized GDH were monitored in an aqueous buffer under shaking (200 rpm), the residual activities of the free GDH and ADS could no longer be detected after 8 days and 22 days, respectively, while the NER maintained 64% of its initial activity even after 24-day incubation. The time-dependent conversion of glycerol to DHA was measured for both ADS and NER not only by analyzing the generation of NADH spectrophotometrically (340 nm) but also via the HPLC analysis measuring the increase of the DHA peak. Magnetically-separable NER maintained 39% of its initial activity after seven cycles of repeated use, while the residual activity of ADS dropped to 13% of its initial activity after only two recycled uses. (C) 2015 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectMESOPOROUS SILICA-
dc.subjectOXIDATION-
dc.subjectSYSTEM-
dc.titleStabilized glycerol dehydrogenase for the conversion of glycerol to dihydroxyacetone-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jungbae-
dc.identifier.doi10.1016/j.cej.2015.04.039-
dc.identifier.scopusid2-s2.0-84929462346-
dc.identifier.wosid000356745900033-
dc.identifier.bibliographicCitationCHEMICAL ENGINEERING JOURNAL, v.276, pp.283 - 288-
dc.relation.isPartOfCHEMICAL ENGINEERING JOURNAL-
dc.citation.titleCHEMICAL ENGINEERING JOURNAL-
dc.citation.volume276-
dc.citation.startPage283-
dc.citation.endPage288-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusMESOPOROUS SILICA-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorGlycerol dehydrogenase-
dc.subject.keywordAuthorGlycerol-
dc.subject.keywordAuthorDihydroxyacetone-
dc.subject.keywordAuthorNanoscale enzyme reactors-
dc.subject.keywordAuthorEnzyme immobilization and stabilization-
dc.subject.keywordAuthorMagnetic separation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung bae photo

Kim, Jung bae
공과대학 (화공생명공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE