Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multiphase and Double-Layer NiFe2O4@NiO-Flollow-NanosphereDecorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Gi Dae-
dc.contributor.authorCho, Jung Sang-
dc.contributor.authorKang, Yun Chan-
dc.date.accessioned2021-09-04T13:33:06Z-
dc.date.available2021-09-04T13:33:06Z-
dc.date.created2021-06-18-
dc.date.issued2015-08-05-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/92775-
dc.description.abstractMulticomponent metal oxide hollow-nanosphere decorated reduced graphene oxide (rGO) composite powders are prepared by spray pyrolysis with nanoscale Kirkendall diffusion. The double-layer NiFe2O4@NiO-hollow-nanosphere decorated rGO composite powders are prepared using the first target material. The NiFe-alloy-nanopowder decorated rGO powders are prepared as an intermediate product by post-treatment under the reducing atmosphere of the NiFe2O4/NiO-decorated rGO composite powders obtained by spray pyrolysis. The different diffusion rates of Ni (83 pm for Ni2+) and Fe (76 pm for Fe2+, 65 pm for Fe3+) cations with different radii during nanoscale Kirkendall diffusion result in multiphase and double-layer NiFe2O4@NiO hollow nanospheres. The mean size of the hollow NiFe2O4@NiO nanospheres decorated uniformly within crumpled rGO is 14 nm. The first discharge capacities of the nanosphere-decorated rGO composite powders with filled NiFe2O4/NiO and hollow NiFe2O4@NiO at a current density of 1 A g(-1) are 1168 and 1319 mA h g(-1), respectively. Their discharge capacities for the 100th cycle are 597 and 951 mA h g(-1), respectively. The discharge capacity of the NiFe2O4@NiO-hollow-nanosphere-decorated rGO composite powders at the high current density of 4 A g(-1) for the 400th cycle is 789 mA h g(-1).-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectION BATTERY ANODE-
dc.subjectMETAL-ORGANIC FRAMEWORKS-
dc.subjectHIGH-PERFORMANCE-
dc.subjectYOLK-SHELL-
dc.subjectHOLLOW NANOSPHERES-
dc.subjectELECTROCHEMICAL PERFORMANCE-
dc.subjectFACILE SYNTHESIS-
dc.subjectHIGH-CAPACITY-
dc.subjectDESIGN-
dc.subjectSTORAGE-
dc.titleMultiphase and Double-Layer NiFe2O4@NiO-Flollow-NanosphereDecorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion-
dc.typeArticle-
dc.contributor.affiliatedAuthorKang, Yun Chan-
dc.identifier.doi10.1021/acsami.5b04891-
dc.identifier.scopusid2-s2.0-84938633598-
dc.identifier.wosid000359279800084-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.7, no.30, pp.16842 - 16849-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume7-
dc.citation.number30-
dc.citation.startPage16842-
dc.citation.endPage16849-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusION BATTERY ANODE-
dc.subject.keywordPlusMETAL-ORGANIC FRAMEWORKS-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusYOLK-SHELL-
dc.subject.keywordPlusHOLLOW NANOSPHERES-
dc.subject.keywordPlusELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusFACILE SYNTHESIS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordAuthorKirkendall effect nanostructure-
dc.subject.keywordAuthorreduced graphene oxide-
dc.subject.keywordAuthorlithiurn on batteries-
dc.subject.keywordAuthorspray pyrolysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE