Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Structural Evolution of Chemically-Driven RuO2 Nanowires and 3-Dimensional Design for Photo-Catalytic Applications

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Joonmo-
dc.contributor.authorLee, Jae Won-
dc.contributor.authorYe, Byeong Uk-
dc.contributor.authorChun, Sung He-
dc.contributor.authorJoo, Sang Hoon-
dc.contributor.authorPark, Hyunwoong-
dc.contributor.authorLee, Heon-
dc.contributor.authorJeong, Hu Young-
dc.contributor.authorKim, Myung Hwa-
dc.contributor.authorBaik, Jeong Min-
dc.date.accessioned2021-09-04T14:19:47Z-
dc.date.available2021-09-04T14:19:47Z-
dc.date.created2021-06-16-
dc.date.issued2015-07-07-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/93027-
dc.description.abstractGrowth mechanism of chemically-driven RuO2 nanowires is explored and used to fabricate three-dimensional RuO2 branched Au-TiO2 nanowire electrodes for the photostable solar water oxidation. For the real time structural evolution during the nanowire growth, the amorphous RuO2 precursors (Ru(OH)(3)center dot H2O) are heated at 180 degrees C, producing the RuO2 nanoparticles with the tetragonal crystallographic structure and Ru enriched amorphous phases, observed through the in-situ synchrotron x-ray diffraction and the high-resolution transmission electron microscope images. Growth then proceeds by Ru diffusion to the nanoparticles, followed by the diffusion to the growing surface of the nanowire in oxygen ambient, supported by the nucleation theory. The RuO2 branched Au-TiO2 nanowire arrays shows a remarkable enhancement in the photocurrent density by approximately 60% and 200%, in the UV-visible and Visible region, respectively, compared with pristine TiO2 nanowires. Furthermore, there is no significant decrease in the device's photoconductance with UV-visible illumination during 1 day, making it possible to produce oxygen gas without the loss of the photoactvity.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectTHERMAL EVAPORATION-
dc.subjectTIO2 NANORODS-
dc.subjectNANOSTRUCTURES-
dc.subjectGROWTH-
dc.subjectARRAYS-
dc.subjectNANOPARTICLES-
dc.subjectCOMPOSITE-
dc.subjectROUTE-
dc.titleStructural Evolution of Chemically-Driven RuO2 Nanowires and 3-Dimensional Design for Photo-Catalytic Applications-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Heon-
dc.identifier.doi10.1038/srep11933-
dc.identifier.scopusid2-s2.0-84936749019-
dc.identifier.wosid000357449500002-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, v.5-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.citation.titleSCIENTIFIC REPORTS-
dc.citation.volume5-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusTHERMAL EVAPORATION-
dc.subject.keywordPlusTIO2 NANORODS-
dc.subject.keywordPlusNANOSTRUCTURES-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusROUTE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Heon photo

Lee, Heon
College of Engineering (Department of Materials Science and Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE