Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Lead and copper removal from aqueous solutions using carbon foam derived from phenol resin

Authors
Lee, Chang-GuJeon, Jun-WooHwang, Min-JinAhn, Kyu-HongPark, ChanhyukChoi, Jae-WooLee, Sang-Hyup
Issue Date
7월-2015
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Keywords
Carbon foam; Lead removal; Copper removal; Batch experiments; Surface precipitation
Citation
CHEMOSPHERE, v.130, pp.59 - 65
Indexed
SCIE
SCOPUS
Journal Title
CHEMOSPHERE
Volume
130
Start Page
59
End Page
65
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/93221
DOI
10.1016/j.chemosphere.2015.02.055
ISSN
0045-6535
Abstract
Phenolic resin-based carbon foam was prepared as an adsorbent for removing heavy metals from aqueous solutions. The surface of the produced carbon foam had a well-developed open cell structure and the specific surface area according to the BET model was 458.59 m(2) g(-1). Batch experiments showed that removal ratio increased in the order of copper (19.83%), zinc (34.35%), cadmium (59.82%), and lead (73.99%) in mixed solutions with the same initial concentration (50 mg L-1). The results indicated that the Sips isotherm model was the most suitable for describing the experimental data of lead and copper. The maximum adsorption capacity of lead and copper determined to Sips model were 491 mg g(-1) and 247 mg g-1. The obtained pore diffusion coefficients for lead and copper were found to be 1.02 x 10(-6) and 2.42 x 10(-7) m(2) s(-1), respectively. Post-sorption characteristics indicated that surface precipitation was the primary mechanism of lead and copper removal by the carbon foam, while the functional groups on the surface of the foam did not affect metal adsorption. (C) 2015 Elsevier Ltd. All rights reserved.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE