Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Motion correction of magnetic resonance imaging data by using adaptive moving least squares method

Full metadata record
DC Field Value Language
dc.contributor.authorNam, Haewon-
dc.contributor.authorLee, Yeon Ju-
dc.contributor.authorJeong, Byeongseon-
dc.contributor.authorPark, Hae-Jeong-
dc.contributor.authorYoon, Jungho-
dc.date.accessioned2021-09-04T15:23:23Z-
dc.date.available2021-09-04T15:23:23Z-
dc.date.created2021-06-18-
dc.date.issued2015-06-
dc.identifier.issn0730-725X-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/93338-
dc.description.abstractImage artifacts caused by subject motion during the imaging sequence are one of the most common problems in magnetic resonance imaging (MRI) and often degrade the image quality. In this study, we develop a motion correction algorithm for the interleaved-MR acquisition. An advantage of the proposed method is that it does not require either additional equipment or redundant over-sampling. The general framework of this study is similar to that of Rohlfing et al. [1], except for the introduction of the following fundamental modification. The three-dimensional (3-D) scattered data approximation method is used to correct the artifacted data as a post-processing step. In order to obtain a better match to the local structures of the given image, we use the data-adapted moving least squares (MLS) method that can improve the performance of the classical method. Numerical results are provided to demonstrate the advantages of the proposed algorithm. (C) 2015 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE INC-
dc.subjectRIGID-BODY MOTION-
dc.subjectHEAD MOTION-
dc.subjectMRI-
dc.subjectFMRI-
dc.subjectRECONSTRUCTION-
dc.subjectIMAGES-
dc.subjectVOLUME-
dc.subjectSLICE-
dc.subjectINTERPOLATION-
dc.subjectREGISTRATION-
dc.titleMotion correction of magnetic resonance imaging data by using adaptive moving least squares method-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Yeon Ju-
dc.identifier.doi10.1016/j.mri.2015.02.003-
dc.identifier.scopusid2-s2.0-84947494468-
dc.identifier.wosid000354831500020-
dc.identifier.bibliographicCitationMAGNETIC RESONANCE IMAGING, v.33, no.5, pp.659 - 670-
dc.relation.isPartOfMAGNETIC RESONANCE IMAGING-
dc.citation.titleMAGNETIC RESONANCE IMAGING-
dc.citation.volume33-
dc.citation.number5-
dc.citation.startPage659-
dc.citation.endPage670-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusRIGID-BODY MOTION-
dc.subject.keywordPlusHEAD MOTION-
dc.subject.keywordPlusMRI-
dc.subject.keywordPlusFMRI-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusIMAGES-
dc.subject.keywordPlusVOLUME-
dc.subject.keywordPlusSLICE-
dc.subject.keywordPlusINTERPOLATION-
dc.subject.keywordPlusREGISTRATION-
dc.subject.keywordAuthor3-D image-
dc.subject.keywordAuthorEdge-directed interpolation-
dc.subject.keywordAuthorResampling-
dc.subject.keywordAuthorGradients-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > Data Computational Sciences in Division of Applied Mathematical Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE