Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Chiroptical signal enhancement in quasi-null-polarization-detection geometry: Intrinsic limitations

Authors
Rhee, HanjuEom, IntaeAhn, Sung-HyunSong, Ki-HeeCho, Minhaeng
Issue Date
21-5월-2015
Publisher
AMER PHYSICAL SOC
Citation
PHYSICAL REVIEW A, v.91, no.5
Indexed
SCIE
SCOPUS
Journal Title
PHYSICAL REVIEW A
Volume
91
Number
5
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/93528
DOI
10.1103/PhysRevA.91.053839
ISSN
1050-2947
Abstract
Despite its unique capability of distinguishing molecular handedness, chiroptical spectroscopy suffers from the weak-signal problem, which has restricted more extensive applications. The quasi-null-polarization-detection (QNPD) method has been shown to be useful for enhancing the chiroptical signal. Here, the underlying enhancement mechanism in the QNPD method combined with a heterodyne detection scheme is elucidated. It is experimentally demonstrated that the optical rotatory dispersion signal can be amplified by a factor of similar to 400, which is the maximum enhancement effect achievable with our femtosecond laser setup. The upper limit of the QNPD enhancement effect of chiroptical measurements could, in practice, be limited by imperfection of the polarizer and finite detection sensitivity. However, we show that there exists an intrinsic limit in the enhancement with the QNPD method due to the weak but finite contribution from the homodyne chiroptical signal. This is experimentally verified by measuring the optical rotation of linearly polarized light with the QNPD scheme. We further provide discussions on the connection between this intrinsic limitation in the QNPD scheme for enhanced detection of weak chiroptical signals and those in optical enantioselectivity and Raman optical activity with a structured chiral field. We anticipate that the present work could be useful in further developing time-resolved nonlinear chiroptical spectroscopy.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Min haeng photo

Cho, Min haeng
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE