Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Layer-selective half-metallicity in bilayer graphene nanoribbons

Authors
Jeon, Gi WanLee, Kyu WonLee, Cheol Eui
Issue Date
7-5월-2015
Publisher
NATURE PUBLISHING GROUP
Citation
SCIENTIFIC REPORTS, v.5
Indexed
SCIE
SCOPUS
Journal Title
SCIENTIFIC REPORTS
Volume
5
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/93573
DOI
10.1038/srep09825
ISSN
2045-2322
Abstract
Half-metallicity recently predicted in the zigzag-edge graphene nanoribbons (ZGNRs) and the hydrogenated carbon nanotubes (CNTs) enables fully spin-polarized electric currents, providing a basis for carbon-based spintronics. In both carbon systems, the half-metallicity arises from the edge-localized electron states under an electric field, lowering the critical electric field D-c for the half-metallicity being an issue in recent works on ZGNRs. A properly chosen direction of the electric field alone has been predicted to significantly reduce Dc in the hydrogenated CNTs, which in this work turned out to be the case in narrow bilayer ZGNRs (biZGNRs). Here, our simple model based on the electrostatic potential difference between the edges predicts that for wide biZGNRs of width greater than similar to 2.0 nm (10 zigzag carbon chains), only one layer of the biZGNRs becomes half-metallic leaving the other layer insulating as confirmed by our density functional theory (DFT) calculations. The electric field-induced switching of the spin-polarized current path is believed to open a new route to graphene-based spintronics applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Physics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE